End-to-end multibranch network for palm vein recognition and liveness detection

活泼 计算机科学 计算机视觉 人工智能 棕榈 图像处理 模式识别(心理学) 图像(数学) 理论计算机科学 物理 量子力学
作者
Wenzhong Shen,Juan Liang
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:33 (01)
标识
DOI:10.1117/1.jei.33.1.013054
摘要

Palm vein biometric technology is widely regarded as highly secure due to its challenging-to-forge characteristics. However, recent empirical studies have revealed that forged vein patterns printed on paper can deceive palm vein recognition systems, thereby leading to security breaches. The conventional approach to address this issue involves performing liveness detection followed by preprocessing the palm vein image prior to recognition, which increases the algorithmic complexity and might adversely affect overall performance. To overcome these limitations, we propose a multibranch network (PVCodeNet++) for end-to-end integration of palm vein recognition and liveness detection using a multitask learning approach. Specifically, our proposed model leverages network weight sharing and mutual assistance between network branches to enhance overall performance. We utilize the transformer encoder as the underlying shared component, employ central difference convolution for the liveness detection branch, introduce the normalized attention mechanism, and balance the multitask loss through the uncertainty weighting method. Experiments on palm vein liveness and spoofing datasets show that the proposed PVCodeNet++ has an equal error rate of 0 for recognition performance metrics on various datasets, a significant improvement in the intraclass compactness and interclass separability separation metric, increasing from 7.88 to 9.37 on the PolyU dataset; and an average classification error rate of 0 for liveness detection performance metrics, demonstrating the feasibility and effectiveness of the method proposed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
Wonder罗发布了新的文献求助10
2秒前
Twonej给lilianan的求助进行了留言
4秒前
dddddw完成签到,获得积分10
5秒前
儒雅致远发布了新的文献求助10
5秒前
6秒前
祖乐萱发布了新的文献求助10
8秒前
陈信宏完成签到,获得积分10
9秒前
9秒前
逍遥子完成签到,获得积分10
9秒前
10秒前
ff发布了新的文献求助10
11秒前
浮游应助djbj2022采纳,获得10
11秒前
科研通AI6应助双夏采纳,获得30
13秒前
冬日空虚完成签到,获得积分10
13秒前
14秒前
16秒前
17秒前
大个应助小黄采纳,获得10
17秒前
18秒前
18秒前
jack发布了新的文献求助10
19秒前
爱笑的天空完成签到,获得积分10
19秒前
20秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
simdows完成签到,获得积分10
23秒前
科研通AI6应助季文婷采纳,获得10
23秒前
脑洞疼应助jack采纳,获得10
27秒前
123应助儒雅致远采纳,获得10
27秒前
慕青应助儒雅致远采纳,获得10
27秒前
善学以致用应助万事都灵采纳,获得10
28秒前
Wonder罗完成签到,获得积分20
29秒前
小蘑菇应助坦率幻灵采纳,获得10
33秒前
33秒前
34秒前
35秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638000
求助须知:如何正确求助?哪些是违规求助? 4744481
关于积分的说明 15000910
捐赠科研通 4796182
什么是DOI,文献DOI怎么找? 2562369
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481741