End-to-end multibranch network for palm vein recognition and liveness detection

活泼 计算机科学 计算机视觉 人工智能 棕榈 图像处理 模式识别(心理学) 图像(数学) 理论计算机科学 物理 量子力学
作者
Wenzhong Shen,Juan Liang
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:33 (01)
标识
DOI:10.1117/1.jei.33.1.013054
摘要

Palm vein biometric technology is widely regarded as highly secure due to its challenging-to-forge characteristics. However, recent empirical studies have revealed that forged vein patterns printed on paper can deceive palm vein recognition systems, thereby leading to security breaches. The conventional approach to address this issue involves performing liveness detection followed by preprocessing the palm vein image prior to recognition, which increases the algorithmic complexity and might adversely affect overall performance. To overcome these limitations, we propose a multibranch network (PVCodeNet++) for end-to-end integration of palm vein recognition and liveness detection using a multitask learning approach. Specifically, our proposed model leverages network weight sharing and mutual assistance between network branches to enhance overall performance. We utilize the transformer encoder as the underlying shared component, employ central difference convolution for the liveness detection branch, introduce the normalized attention mechanism, and balance the multitask loss through the uncertainty weighting method. Experiments on palm vein liveness and spoofing datasets show that the proposed PVCodeNet++ has an equal error rate of 0 for recognition performance metrics on various datasets, a significant improvement in the intraclass compactness and interclass separability separation metric, increasing from 7.88 to 9.37 on the PolyU dataset; and an average classification error rate of 0 for liveness detection performance metrics, demonstrating the feasibility and effectiveness of the method proposed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz驳回了小青椒应助
刚刚
斯文败类应助wzy采纳,获得10
刚刚
自然的曲奇完成签到 ,获得积分10
刚刚
刚刚
刚刚
善学以致用应助dakjdia采纳,获得10
1秒前
离线请留言完成签到,获得积分10
1秒前
ding应助QIQI采纳,获得10
1秒前
无名小卒每文完成签到,获得积分10
1秒前
邢丹丹发布了新的文献求助10
1秒前
2秒前
3秒前
蓝天发布了新的文献求助10
4秒前
Akim应助春花采纳,获得10
4秒前
youy发布了新的文献求助20
4秒前
5秒前
多情易蓉完成签到,获得积分10
5秒前
5秒前
微光完成签到,获得积分10
5秒前
毛毛完成签到,获得积分10
6秒前
6秒前
大大怪发布了新的文献求助20
6秒前
7秒前
7秒前
斯文败类应助欣慰雪巧采纳,获得10
8秒前
梅菜菜完成签到,获得积分10
8秒前
10秒前
Hello应助zyx采纳,获得10
11秒前
11秒前
学术小白完成签到,获得积分10
11秒前
11秒前
梅菜菜发布了新的文献求助10
11秒前
舒克发布了新的文献求助10
12秒前
Rgly完成签到 ,获得积分10
12秒前
负责中恶完成签到,获得积分10
13秒前
chihiro完成签到,获得积分20
13秒前
墨琼琼应助科研通管家采纳,获得10
13秒前
墨琼琼应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933