End-to-end multibranch network for palm vein recognition and liveness detection

活泼 计算机科学 计算机视觉 人工智能 棕榈 图像处理 模式识别(心理学) 图像(数学) 理论计算机科学 物理 量子力学
作者
Wenzhong Shen,Juan Liang
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:33 (01)
标识
DOI:10.1117/1.jei.33.1.013054
摘要

Palm vein biometric technology is widely regarded as highly secure due to its challenging-to-forge characteristics. However, recent empirical studies have revealed that forged vein patterns printed on paper can deceive palm vein recognition systems, thereby leading to security breaches. The conventional approach to address this issue involves performing liveness detection followed by preprocessing the palm vein image prior to recognition, which increases the algorithmic complexity and might adversely affect overall performance. To overcome these limitations, we propose a multibranch network (PVCodeNet++) for end-to-end integration of palm vein recognition and liveness detection using a multitask learning approach. Specifically, our proposed model leverages network weight sharing and mutual assistance between network branches to enhance overall performance. We utilize the transformer encoder as the underlying shared component, employ central difference convolution for the liveness detection branch, introduce the normalized attention mechanism, and balance the multitask loss through the uncertainty weighting method. Experiments on palm vein liveness and spoofing datasets show that the proposed PVCodeNet++ has an equal error rate of 0 for recognition performance metrics on various datasets, a significant improvement in the intraclass compactness and interclass separability separation metric, increasing from 7.88 to 9.37 on the PolyU dataset; and an average classification error rate of 0 for liveness detection performance metrics, demonstrating the feasibility and effectiveness of the method proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助150
1秒前
xiaofeixia完成签到 ,获得积分10
2秒前
随便起个名完成签到,获得积分10
4秒前
HH完成签到,获得积分10
4秒前
chris完成签到,获得积分10
4秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得150
5秒前
FashionBoy应助科研通管家采纳,获得30
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得150
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
美丽人生完成签到 ,获得积分10
6秒前
雨后完成签到 ,获得积分10
8秒前
Augenstern完成签到,获得积分10
8秒前
溆玉碎兰笑完成签到 ,获得积分10
10秒前
李大胖胖完成签到 ,获得积分10
10秒前
Edou完成签到 ,获得积分10
10秒前
2275523154完成签到,获得积分10
11秒前
豆浆来点蒜泥完成签到,获得积分10
12秒前
简单完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助150
15秒前
nan完成签到,获得积分10
15秒前
Hh完成签到,获得积分10
17秒前
sun完成签到,获得积分10
21秒前
完美世界应助plateauman采纳,获得10
21秒前
嘟嘟豆806完成签到 ,获得积分10
21秒前
freeway完成签到,获得积分10
22秒前
辛勤谷雪完成签到,获得积分10
24秒前
清脆的秋寒完成签到,获得积分10
24秒前
傅家庆完成签到 ,获得积分10
24秒前
yziy完成签到 ,获得积分10
25秒前
现代大神完成签到,获得积分10
30秒前
zy完成签到 ,获得积分10
30秒前
komorebi完成签到 ,获得积分10
31秒前
量子星尘发布了新的文献求助10
31秒前
小龙完成签到 ,获得积分10
35秒前
37秒前
39秒前
aaaa完成签到 ,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5093339
求助须知:如何正确求助?哪些是违规求助? 4306976
关于积分的说明 13417433
捐赠科研通 4133171
什么是DOI,文献DOI怎么找? 2264356
邀请新用户注册赠送积分活动 1268004
关于科研通互助平台的介绍 1203813