Data-driven digital transformation for supply chain carbon neutrality: Insights from cross-sector supply chain

供应链 透明度(行为) 中立 碳中和 业务 产业组织 供应链管理 数字化转型 分析 环境经济学 计算机科学 经济 温室气体 营销 数据科学 计算机安全 生态学 哲学 认识论 万维网 生物
作者
Amine Belhadi,Venkatesh Mani,Sachin Kamble,Mohammad Zoynul Abedin
出处
期刊:International Journal of Production Economics [Elsevier]
卷期号:270: 109178-109178 被引量:13
标识
DOI:10.1016/j.ijpe.2024.109178
摘要

Following the growing pressure on firms and supply chains regarding their environmental impact, carbon neutrality of supply chains is gaining substantial attention among scholars and practitioners. Data-driven digital transformation supports supply chains in achieving higher carbon reduction while improving efficiency and economic performance. However, the conditions under which data-driven digital transformation can provide the desired effect remain unclear due to a lack of empirical evidence. This study aims to address this gap by examining how data-driven digital transformation, enabled by data analytics capabilities, contributes to establishing a win-win situation between carbon and economic performance in the face of several sources of carbon uncertainty through fostering supply chain carbon transparency. Drawing upon the organizational information-processing theory, we posit that the fit between information needs to reduce carbon uncertainties and the information capabilities provided by data-driven digital transformation is critical for enhancing supply chain carbon transparency and balancing supply chains' economic and carbon performance. We examine these relationships using regression tests based on survey data from 437 manufacturing companies from different regions (i.e., Europe, Africa, and Asia). Our results reveal that data analytics capabilities alone cannot enhance supply chain carbon transparency until integrated into a comprehensive business transformation. In that case, carbon transparency would positively mediate overcoming carbon uncertainties and improve the supply chains' carbon and economic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sherrinford完成签到,获得积分10
刚刚
隐形曼青应助ymbb采纳,获得10
1秒前
冷酷向薇完成签到,获得积分10
1秒前
纯情的碧玉完成签到,获得积分10
1秒前
韩韩完成签到 ,获得积分10
3秒前
kerwin应助春风嬉蝉采纳,获得20
3秒前
momo完成签到 ,获得积分10
3秒前
nns完成签到,获得积分10
4秒前
4秒前
CodeCraft应助毛豆爸爸采纳,获得10
4秒前
5秒前
张亚慧完成签到 ,获得积分10
7秒前
fin完成签到 ,获得积分10
7秒前
nns发布了新的文献求助10
8秒前
坚定的映寒完成签到 ,获得积分10
9秒前
风趣的含海完成签到,获得积分10
9秒前
yuaner发布了新的文献求助10
9秒前
超帅花瓣完成签到,获得积分10
10秒前
劉劉完成签到 ,获得积分10
11秒前
子车茗应助yuaner采纳,获得10
12秒前
脑洞疼应助yuaner采纳,获得10
12秒前
12秒前
13秒前
听话的蜡烛完成签到,获得积分10
14秒前
14秒前
大模型应助zoeyliu采纳,获得10
15秒前
15秒前
我是老大应助yuaner采纳,获得10
18秒前
FashionBoy应助yuaner采纳,获得10
18秒前
大模型应助yuaner采纳,获得10
18秒前
cocolu应助yuaner采纳,获得10
18秒前
bkagyin应助yuaner采纳,获得10
18秒前
bkagyin应助yuaner采纳,获得10
18秒前
小奕应助yuaner采纳,获得10
18秒前
Lucas应助yuaner采纳,获得10
18秒前
Lucas应助yuaner采纳,获得10
18秒前
完美世界应助yuaner采纳,获得10
18秒前
伶俐的大雁完成签到,获得积分10
18秒前
科研通AI2S应助风趣的含海采纳,获得10
19秒前
19秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3220993
求助须知:如何正确求助?哪些是违规求助? 2869713
关于积分的说明 8166867
捐赠科研通 2536451
什么是DOI,文献DOI怎么找? 1368887
科研通“疑难数据库(出版商)”最低求助积分说明 645267
邀请新用户注册赠送积分活动 618946