Structural damage identification with output-only strain measurements and swarm intelligence algorithms: a comparative study

鉴定(生物学) 群体智能 算法 拉伤 计算机科学 群体行为 人工智能 粒子群优化 生物 解剖 植物
作者
Aiguo Xu,Jiale Hou,Kun Feng,Chunfeng Wan,Liyu Xie,Songtao Xue,Mohammad Noori,Zhenghao Ding
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (5): 056125-056125
标识
DOI:10.1088/1361-6501/ad2ad4
摘要

Abstract The identification of structural damage with the unavailability of input excitations is highly desired but challenging since structural dynamic responses are affected by the coupling effect of structural parameters and external excitations. To deal with this issue, in this paper, an output-only damage identification strategy based on swarm intelligence algorithms and correlation functions of strain responses is proposed to identify structures subjected to single or multiple unknown white noise excitations. In the proposed strategy, four different population-based optimization algorithms—particle swarm optimization, the butterfly optimization algorithm, the tree seed algorithm, and a micro search Jaya (MS-Jaya)—are employed and compared. The micro search mechanism is integrated into a basic Jaya algorithm to improve its computational efficiency and accuracy by eliminating some damage variables with small values for the identified best solution after several iterations. The objective function is established based on the proposed auto/cross-correlation function of strain responses and a penalty function. The effectiveness of the proposed method is verified with numerical studies on a simply supported beam structure and a steel grid benchmark structure under ambient excitation. In addition, the effect of the reference point, number of sensors, and arrangement of strain gauges on the performance of the proposed method are discussed in detail. The investigated results demonstrate that the proposed approach can accurately detect, locate, and quantify structural damage with limited sensors and 20% noise-polluted strain responses. In particular, the proposed MS-Jaya algorithm presents a more superior capacity in solving the optimization-based damage identification problem than the other three algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
包子完成签到,获得积分10
刚刚
Candice完成签到,获得积分20
1秒前
Docsiwen完成签到 ,获得积分10
2秒前
瑾瑜完成签到 ,获得积分10
2秒前
4秒前
苹果路人完成签到,获得积分10
5秒前
DD完成签到,获得积分10
6秒前
冷艳的友瑶完成签到,获得积分10
7秒前
淡然勒完成签到,获得积分10
8秒前
平常的梦完成签到,获得积分10
8秒前
牛奶开水完成签到 ,获得积分10
8秒前
椎珏发布了新的文献求助10
9秒前
还不错完成签到,获得积分10
11秒前
奋斗的菀完成签到,获得积分20
11秒前
迁小yan完成签到 ,获得积分10
12秒前
得意忘言完成签到,获得积分10
14秒前
Minjalee完成签到,获得积分0
15秒前
skepticalsnails完成签到,获得积分10
15秒前
帅哥完成签到,获得积分10
16秒前
细心的小懒虫完成签到,获得积分10
17秒前
研友_nv2krn完成签到 ,获得积分10
17秒前
月月月鸟伟完成签到,获得积分10
17秒前
阳阳杜完成签到 ,获得积分10
18秒前
11完成签到,获得积分10
19秒前
宋北北完成签到,获得积分10
19秒前
寒凌完成签到,获得积分10
19秒前
香菜完成签到,获得积分10
19秒前
时间管理啊鲲完成签到 ,获得积分10
19秒前
臭臭完成签到,获得积分10
20秒前
秋时完成签到,获得积分10
20秒前
小二郎应助乐乐采纳,获得10
21秒前
Jae完成签到 ,获得积分10
22秒前
秋时发布了新的文献求助10
22秒前
11111完成签到,获得积分10
22秒前
叶宇豪完成签到,获得积分10
22秒前
胖丁完成签到,获得积分10
23秒前
糊糊完成签到 ,获得积分10
25秒前
宁静致远QY完成签到,获得积分10
25秒前
大王具足虫完成签到,获得积分0
26秒前
ghost完成签到,获得积分10
26秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167282
求助须知:如何正确求助?哪些是违规求助? 2818798
关于积分的说明 7922523
捐赠科研通 2478563
什么是DOI,文献DOI怎么找? 1320404
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443