亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Structural damage identification with output-only strain measurements and swarm intelligence algorithms: a comparative study

鉴定(生物学) 群体智能 算法 拉伤 计算机科学 群体行为 人工智能 粒子群优化 生物 植物 解剖
作者
Aiguo Xu,Jiale Hou,Kun Feng,Chunfeng Wan,Liyu Xie,Songtao Xue,Mohammad Noori,Zhenghao Ding
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (5): 056125-056125
标识
DOI:10.1088/1361-6501/ad2ad4
摘要

Abstract The identification of structural damage with the unavailability of input excitations is highly desired but challenging since structural dynamic responses are affected by the coupling effect of structural parameters and external excitations. To deal with this issue, in this paper, an output-only damage identification strategy based on swarm intelligence algorithms and correlation functions of strain responses is proposed to identify structures subjected to single or multiple unknown white noise excitations. In the proposed strategy, four different population-based optimization algorithms—particle swarm optimization, the butterfly optimization algorithm, the tree seed algorithm, and a micro search Jaya (MS-Jaya)—are employed and compared. The micro search mechanism is integrated into a basic Jaya algorithm to improve its computational efficiency and accuracy by eliminating some damage variables with small values for the identified best solution after several iterations. The objective function is established based on the proposed auto/cross-correlation function of strain responses and a penalty function. The effectiveness of the proposed method is verified with numerical studies on a simply supported beam structure and a steel grid benchmark structure under ambient excitation. In addition, the effect of the reference point, number of sensors, and arrangement of strain gauges on the performance of the proposed method are discussed in detail. The investigated results demonstrate that the proposed approach can accurately detect, locate, and quantify structural damage with limited sensors and 20% noise-polluted strain responses. In particular, the proposed MS-Jaya algorithm presents a more superior capacity in solving the optimization-based damage identification problem than the other three algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搜集达人应助墨痕采纳,获得10
5秒前
ocseek发布了新的文献求助10
12秒前
super666完成签到,获得积分10
16秒前
30秒前
儒雅的十八完成签到,获得积分10
30秒前
墨痕发布了新的文献求助10
34秒前
完美世界应助ocseek采纳,获得10
34秒前
小鱼鱼完成签到,获得积分20
39秒前
43秒前
小鱼鱼发布了新的文献求助10
43秒前
48秒前
50秒前
英勇明雪完成签到 ,获得积分10
51秒前
852应助lcj1014采纳,获得10
52秒前
和谐半青发布了新的文献求助10
55秒前
爆米花应助和谐半青采纳,获得10
1分钟前
调皮芫完成签到,获得积分10
1分钟前
1分钟前
lcj1014发布了新的文献求助10
1分钟前
健忘的溪灵完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
zhnn完成签到,获得积分10
1分钟前
zhnn发布了新的文献求助20
1分钟前
慕青应助金水相生采纳,获得10
1分钟前
1分钟前
zsz发布了新的文献求助10
1分钟前
1分钟前
小青椒应助CallMeIris采纳,获得10
1分钟前
俏皮芷蕊发布了新的文献求助10
1分钟前
1分钟前
朴素海亦发布了新的文献求助10
1分钟前
吉瓦哈布发布了新的文献求助10
1分钟前
俏皮芷蕊完成签到,获得积分10
1分钟前
40873完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
山梦完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568162
求助须知:如何正确求助?哪些是违规求助? 4652598
关于积分的说明 14701881
捐赠科研通 4594488
什么是DOI,文献DOI怎么找? 2521010
邀请新用户注册赠送积分活动 1492847
关于科研通互助平台的介绍 1463696