Structural damage identification with output-only strain measurements and swarm intelligence algorithms: a comparative study

鉴定(生物学) 群体智能 算法 拉伤 计算机科学 群体行为 人工智能 粒子群优化 生物 植物 解剖
作者
Aiguo Xu,Jiale Hou,Kun Feng,Chunfeng Wan,Liyu Xie,Songtao Xue,Mohammad Noori,Zhenghao Ding
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (5): 056125-056125
标识
DOI:10.1088/1361-6501/ad2ad4
摘要

Abstract The identification of structural damage with the unavailability of input excitations is highly desired but challenging since structural dynamic responses are affected by the coupling effect of structural parameters and external excitations. To deal with this issue, in this paper, an output-only damage identification strategy based on swarm intelligence algorithms and correlation functions of strain responses is proposed to identify structures subjected to single or multiple unknown white noise excitations. In the proposed strategy, four different population-based optimization algorithms—particle swarm optimization, the butterfly optimization algorithm, the tree seed algorithm, and a micro search Jaya (MS-Jaya)—are employed and compared. The micro search mechanism is integrated into a basic Jaya algorithm to improve its computational efficiency and accuracy by eliminating some damage variables with small values for the identified best solution after several iterations. The objective function is established based on the proposed auto/cross-correlation function of strain responses and a penalty function. The effectiveness of the proposed method is verified with numerical studies on a simply supported beam structure and a steel grid benchmark structure under ambient excitation. In addition, the effect of the reference point, number of sensors, and arrangement of strain gauges on the performance of the proposed method are discussed in detail. The investigated results demonstrate that the proposed approach can accurately detect, locate, and quantify structural damage with limited sensors and 20% noise-polluted strain responses. In particular, the proposed MS-Jaya algorithm presents a more superior capacity in solving the optimization-based damage identification problem than the other three algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尘飞扬发布了新的文献求助30
1秒前
秋水浮萍发布了新的文献求助30
1秒前
昵称完成签到,获得积分10
1秒前
1秒前
纪煜祺发布了新的文献求助30
1秒前
liuyu发布了新的文献求助10
1秒前
2秒前
独孤幻月96应助YCmf采纳,获得10
2秒前
好好学习发布了新的文献求助10
2秒前
xj完成签到 ,获得积分10
2秒前
陶醉的酸奶关注了科研通微信公众号
3秒前
RZS完成签到,获得积分10
4秒前
CodeCraft应助黄晓梅采纳,获得10
4秒前
Alex应助荒谬采纳,获得20
4秒前
搜集达人应助受伤海秋采纳,获得10
4秒前
5秒前
领导范儿应助混世魔王采纳,获得10
5秒前
lzh发布了新的文献求助10
5秒前
Thi发布了新的文献求助10
5秒前
等等完成签到,获得积分10
5秒前
今后应助spy采纳,获得10
6秒前
6秒前
orixero应助akscns采纳,获得10
7秒前
雪崩发布了新的文献求助10
7秒前
眯眯眼的鞋垫完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
Owen应助yuhaolove采纳,获得10
9秒前
ll完成签到,获得积分10
10秒前
哈哈王完成签到,获得积分10
10秒前
CodeCraft应助daxianbei采纳,获得10
10秒前
科研通AI6应助lzh采纳,获得10
11秒前
韶华若锦发布了新的文献求助10
11秒前
11秒前
领导范儿应助毛毛虫采纳,获得10
11秒前
林屿溪发布了新的文献求助10
11秒前
12秒前
li完成签到,获得积分10
12秒前
打打应助你好呀采纳,获得30
12秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603700
求助须知:如何正确求助?哪些是违规求助? 4012310
关于积分的说明 12423171
捐赠科研通 3692797
什么是DOI,文献DOI怎么找? 2035913
邀请新用户注册赠送积分活动 1068997
科研通“疑难数据库(出版商)”最低求助积分说明 953482