亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Structural damage identification with output-only strain measurements and swarm intelligence algorithms: a comparative study

鉴定(生物学) 群体智能 算法 拉伤 计算机科学 群体行为 人工智能 粒子群优化 生物 植物 解剖
作者
Aiguo Xu,Jiale Hou,Kun Feng,Chunfeng Wan,Liyu Xie,Songtao Xue,Mohammad Noori,Zhenghao Ding
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (5): 056125-056125
标识
DOI:10.1088/1361-6501/ad2ad4
摘要

Abstract The identification of structural damage with the unavailability of input excitations is highly desired but challenging since structural dynamic responses are affected by the coupling effect of structural parameters and external excitations. To deal with this issue, in this paper, an output-only damage identification strategy based on swarm intelligence algorithms and correlation functions of strain responses is proposed to identify structures subjected to single or multiple unknown white noise excitations. In the proposed strategy, four different population-based optimization algorithms—particle swarm optimization, the butterfly optimization algorithm, the tree seed algorithm, and a micro search Jaya (MS-Jaya)—are employed and compared. The micro search mechanism is integrated into a basic Jaya algorithm to improve its computational efficiency and accuracy by eliminating some damage variables with small values for the identified best solution after several iterations. The objective function is established based on the proposed auto/cross-correlation function of strain responses and a penalty function. The effectiveness of the proposed method is verified with numerical studies on a simply supported beam structure and a steel grid benchmark structure under ambient excitation. In addition, the effect of the reference point, number of sensors, and arrangement of strain gauges on the performance of the proposed method are discussed in detail. The investigated results demonstrate that the proposed approach can accurately detect, locate, and quantify structural damage with limited sensors and 20% noise-polluted strain responses. In particular, the proposed MS-Jaya algorithm presents a more superior capacity in solving the optimization-based damage identification problem than the other three algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dawn完成签到,获得积分10
1秒前
6秒前
YHF2发布了新的文献求助10
10秒前
YHF2完成签到,获得积分10
15秒前
慕青应助sxj采纳,获得10
19秒前
珈蓝完成签到,获得积分10
20秒前
29秒前
sxj发布了新的文献求助10
35秒前
啊啊啊发布了新的文献求助10
37秒前
46秒前
lod完成签到,获得积分10
53秒前
所所应助科研通管家采纳,获得30
59秒前
Ava应助科研通管家采纳,获得10
59秒前
1分钟前
啊啊啊完成签到,获得积分10
1分钟前
1分钟前
1分钟前
小马2023发布了新的文献求助10
1分钟前
chandlerwong发布了新的文献求助10
1分钟前
1分钟前
氯雷他定发布了新的文献求助10
1分钟前
chandlerwong完成签到,获得积分10
1分钟前
上官若男应助sxj采纳,获得10
1分钟前
llll完成签到 ,获得积分0
1分钟前
氯雷他定完成签到,获得积分10
1分钟前
1分钟前
NattyPoe发布了新的文献求助10
1分钟前
阿诺发布了新的文献求助10
1分钟前
1分钟前
眉间雪完成签到 ,获得积分20
1分钟前
天真似狮完成签到 ,获得积分10
1分钟前
sxj发布了新的文献求助10
1分钟前
余念安完成签到 ,获得积分10
1分钟前
Lucas应助阿诺采纳,获得10
1分钟前
桐夜完成签到 ,获得积分10
2分钟前
liang完成签到 ,获得积分10
2分钟前
2分钟前
隐形曼青应助稿子哥采纳,获得30
2分钟前
怡然的鱼发布了新的文献求助10
2分钟前
InsanityK发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
《The Emergency Nursing High-Yield Guide》 (或简称为 Emergency Nursing High-Yield Essentials) 500
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5880512
求助须知:如何正确求助?哪些是违规求助? 6573473
关于积分的说明 15689941
捐赠科研通 5000219
什么是DOI,文献DOI怎么找? 2694223
邀请新用户注册赠送积分活动 1636089
关于科研通互助平台的介绍 1593468