Structural damage identification with output-only strain measurements and swarm intelligence algorithms: a comparative study

鉴定(生物学) 群体智能 算法 拉伤 计算机科学 群体行为 人工智能 粒子群优化 生物 植物 解剖
作者
Aiguo Xu,Jiale Hou,Kun Feng,Chunfeng Wan,Liyu Xie,Songtao Xue,Mohammad Noori,Zhenghao Ding
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (5): 056125-056125
标识
DOI:10.1088/1361-6501/ad2ad4
摘要

Abstract The identification of structural damage with the unavailability of input excitations is highly desired but challenging since structural dynamic responses are affected by the coupling effect of structural parameters and external excitations. To deal with this issue, in this paper, an output-only damage identification strategy based on swarm intelligence algorithms and correlation functions of strain responses is proposed to identify structures subjected to single or multiple unknown white noise excitations. In the proposed strategy, four different population-based optimization algorithms—particle swarm optimization, the butterfly optimization algorithm, the tree seed algorithm, and a micro search Jaya (MS-Jaya)—are employed and compared. The micro search mechanism is integrated into a basic Jaya algorithm to improve its computational efficiency and accuracy by eliminating some damage variables with small values for the identified best solution after several iterations. The objective function is established based on the proposed auto/cross-correlation function of strain responses and a penalty function. The effectiveness of the proposed method is verified with numerical studies on a simply supported beam structure and a steel grid benchmark structure under ambient excitation. In addition, the effect of the reference point, number of sensors, and arrangement of strain gauges on the performance of the proposed method are discussed in detail. The investigated results demonstrate that the proposed approach can accurately detect, locate, and quantify structural damage with limited sensors and 20% noise-polluted strain responses. In particular, the proposed MS-Jaya algorithm presents a more superior capacity in solving the optimization-based damage identification problem than the other three algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助求知的周采纳,获得30
刚刚
Rosemarry发布了新的文献求助10
1秒前
深情安青应助不舍天真采纳,获得10
1秒前
张远最帅完成签到,获得积分10
1秒前
想得开居士完成签到 ,获得积分10
1秒前
missxxx完成签到,获得积分10
2秒前
啾啾发布了新的文献求助10
2秒前
大模型应助17采纳,获得10
3秒前
拼搏的黑夜完成签到,获得积分10
4秒前
4秒前
4秒前
淑芬发布了新的文献求助10
4秒前
嘿嘿发布了新的文献求助10
5秒前
momo应助uuuu采纳,获得10
5秒前
nb小子完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
8秒前
小洋完成签到,获得积分10
9秒前
NIHAO完成签到,获得积分10
9秒前
Achhz发布了新的文献求助10
10秒前
LX完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
FadeSv完成签到,获得积分10
11秒前
sulin关注了科研通微信公众号
12秒前
NIHAO发布了新的文献求助10
12秒前
Chris发布了新的文献求助10
13秒前
不舍天真发布了新的文献求助10
13秒前
13秒前
酷波er应助熊猫采纳,获得10
13秒前
年轻迪奥发布了新的文献求助10
15秒前
15秒前
顾矜应助王艺霖采纳,获得10
15秒前
NI发布了新的文献求助10
16秒前
FIREWORK完成签到,获得积分10
16秒前
lwb完成签到,获得积分10
17秒前
17秒前
小洋关注了科研通微信公众号
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049