Structural damage identification with output-only strain measurements and swarm intelligence algorithms: a comparative study

鉴定(生物学) 群体智能 算法 拉伤 计算机科学 群体行为 人工智能 粒子群优化 生物 解剖 植物
作者
Aiguo Xu,Jiale Hou,Kun Feng,Chunfeng Wan,Liyu Xie,Songtao Xue,Mohammad Noori,Zhenghao Ding
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (5): 056125-056125
标识
DOI:10.1088/1361-6501/ad2ad4
摘要

Abstract The identification of structural damage with the unavailability of input excitations is highly desired but challenging since structural dynamic responses are affected by the coupling effect of structural parameters and external excitations. To deal with this issue, in this paper, an output-only damage identification strategy based on swarm intelligence algorithms and correlation functions of strain responses is proposed to identify structures subjected to single or multiple unknown white noise excitations. In the proposed strategy, four different population-based optimization algorithms—particle swarm optimization, the butterfly optimization algorithm, the tree seed algorithm, and a micro search Jaya (MS-Jaya)—are employed and compared. The micro search mechanism is integrated into a basic Jaya algorithm to improve its computational efficiency and accuracy by eliminating some damage variables with small values for the identified best solution after several iterations. The objective function is established based on the proposed auto/cross-correlation function of strain responses and a penalty function. The effectiveness of the proposed method is verified with numerical studies on a simply supported beam structure and a steel grid benchmark structure under ambient excitation. In addition, the effect of the reference point, number of sensors, and arrangement of strain gauges on the performance of the proposed method are discussed in detail. The investigated results demonstrate that the proposed approach can accurately detect, locate, and quantify structural damage with limited sensors and 20% noise-polluted strain responses. In particular, the proposed MS-Jaya algorithm presents a more superior capacity in solving the optimization-based damage identification problem than the other three algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
侦察兵发布了新的文献求助10
1秒前
司徒元瑶完成签到 ,获得积分10
1秒前
梓榆发布了新的文献求助10
1秒前
1秒前
sweetbearm应助通~采纳,获得10
1秒前
斯文败类应助成就映秋采纳,获得10
2秒前
123456完成签到,获得积分10
2秒前
2秒前
moonlin完成签到 ,获得积分10
2秒前
3秒前
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
5秒前
wanci应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
思源应助蟹黄堡不打折采纳,获得10
5秒前
Lily应助科研通管家采纳,获得40
5秒前
敬老院N号应助科研通管家采纳,获得30
5秒前
zzzq应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
皮皮完成签到 ,获得积分10
5秒前
sallltyyy发布了新的文献求助10
5秒前
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
QPP完成签到,获得积分10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得30
5秒前
喜悦中道应助科研通管家采纳,获得10
5秒前
wzxxxx发布了新的文献求助10
6秒前
冬瓜炖排骨完成签到,获得积分10
6秒前
6666发布了新的文献求助10
6秒前
BB发布了新的文献求助10
7秒前
冷静雅青完成签到 ,获得积分10
8秒前
打打应助zhui采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794