Structural damage identification with output-only strain measurements and swarm intelligence algorithms: a comparative study

鉴定(生物学) 群体智能 算法 拉伤 计算机科学 群体行为 人工智能 粒子群优化 生物 植物 解剖
作者
Aiguo Xu,Jiale Hou,Kun Feng,Chunfeng Wan,Liyu Xie,Songtao Xue,Mohammad Noori,Zhenghao Ding
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (5): 056125-056125
标识
DOI:10.1088/1361-6501/ad2ad4
摘要

Abstract The identification of structural damage with the unavailability of input excitations is highly desired but challenging since structural dynamic responses are affected by the coupling effect of structural parameters and external excitations. To deal with this issue, in this paper, an output-only damage identification strategy based on swarm intelligence algorithms and correlation functions of strain responses is proposed to identify structures subjected to single or multiple unknown white noise excitations. In the proposed strategy, four different population-based optimization algorithms—particle swarm optimization, the butterfly optimization algorithm, the tree seed algorithm, and a micro search Jaya (MS-Jaya)—are employed and compared. The micro search mechanism is integrated into a basic Jaya algorithm to improve its computational efficiency and accuracy by eliminating some damage variables with small values for the identified best solution after several iterations. The objective function is established based on the proposed auto/cross-correlation function of strain responses and a penalty function. The effectiveness of the proposed method is verified with numerical studies on a simply supported beam structure and a steel grid benchmark structure under ambient excitation. In addition, the effect of the reference point, number of sensors, and arrangement of strain gauges on the performance of the proposed method are discussed in detail. The investigated results demonstrate that the proposed approach can accurately detect, locate, and quantify structural damage with limited sensors and 20% noise-polluted strain responses. In particular, the proposed MS-Jaya algorithm presents a more superior capacity in solving the optimization-based damage identification problem than the other three algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浅忆晨曦发布了新的文献求助10
2秒前
nan应助肘汁派采纳,获得10
3秒前
风趣静枫完成签到,获得积分10
3秒前
Vann完成签到,获得积分10
4秒前
科研顺路发布了新的文献求助10
4秒前
kiveeen发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
王智勇完成签到,获得积分10
7秒前
8秒前
lh0907完成签到,获得积分10
9秒前
9秒前
pengGuo完成签到,获得积分20
10秒前
宁萌不酸发布了新的文献求助10
11秒前
12秒前
弎夜发布了新的文献求助10
12秒前
阿达发布了新的文献求助10
12秒前
脑洞疼应助小李采纳,获得10
12秒前
今后应助sober采纳,获得10
12秒前
JamesPei应助罗曼蒂克采纳,获得10
12秒前
打打应助666采纳,获得10
13秒前
mhl完成签到 ,获得积分10
14秒前
14秒前
爆米花应助Krieger采纳,获得10
14秒前
Orange应助lh0907采纳,获得10
15秒前
15秒前
科研通AI5应助午盏采纳,获得30
16秒前
16秒前
Vann发布了新的文献求助10
17秒前
lalalal完成签到,获得积分10
17秒前
17秒前
汉堡包应助宁萌不酸采纳,获得10
17秒前
传奇3应助瘦瘦的艳采纳,获得20
19秒前
19秒前
Ssyong发布了新的文献求助10
19秒前
yy完成签到,获得积分10
20秒前
彭于晏应助wenxianxiazai123采纳,获得10
20秒前
pp发布了新的文献求助10
20秒前
可罗雀完成签到,获得积分0
22秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207786
求助须知:如何正确求助?哪些是违规求助? 4385675
关于积分的说明 13657801
捐赠科研通 4244340
什么是DOI,文献DOI怎么找? 2328746
邀请新用户注册赠送积分活动 1326528
关于科研通互助平台的介绍 1278611