Structural damage identification with output-only strain measurements and swarm intelligence algorithms: a comparative study

鉴定(生物学) 群体智能 算法 拉伤 计算机科学 群体行为 人工智能 粒子群优化 生物 植物 解剖
作者
Aiguo Xu,Jiale Hou,Kun Feng,Chunfeng Wan,Liyu Xie,Songtao Xue,Mohammad Noori,Zhenghao Ding
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (5): 056125-056125
标识
DOI:10.1088/1361-6501/ad2ad4
摘要

Abstract The identification of structural damage with the unavailability of input excitations is highly desired but challenging since structural dynamic responses are affected by the coupling effect of structural parameters and external excitations. To deal with this issue, in this paper, an output-only damage identification strategy based on swarm intelligence algorithms and correlation functions of strain responses is proposed to identify structures subjected to single or multiple unknown white noise excitations. In the proposed strategy, four different population-based optimization algorithms—particle swarm optimization, the butterfly optimization algorithm, the tree seed algorithm, and a micro search Jaya (MS-Jaya)—are employed and compared. The micro search mechanism is integrated into a basic Jaya algorithm to improve its computational efficiency and accuracy by eliminating some damage variables with small values for the identified best solution after several iterations. The objective function is established based on the proposed auto/cross-correlation function of strain responses and a penalty function. The effectiveness of the proposed method is verified with numerical studies on a simply supported beam structure and a steel grid benchmark structure under ambient excitation. In addition, the effect of the reference point, number of sensors, and arrangement of strain gauges on the performance of the proposed method are discussed in detail. The investigated results demonstrate that the proposed approach can accurately detect, locate, and quantify structural damage with limited sensors and 20% noise-polluted strain responses. In particular, the proposed MS-Jaya algorithm presents a more superior capacity in solving the optimization-based damage identification problem than the other three algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大瓶子完成签到 ,获得积分10
1秒前
2秒前
科研通AI2S应助111采纳,获得10
2秒前
小马甲应助咕Lu采纳,获得10
3秒前
3秒前
香蕉觅云应助颖火虫采纳,获得10
3秒前
彭于晏应助小鱼儿采纳,获得10
3秒前
bobo发布了新的文献求助10
4秒前
4秒前
Shine完成签到 ,获得积分10
4秒前
4秒前
4秒前
静水流深发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
BlogY发布了新的文献求助10
7秒前
XH完成签到,获得积分10
8秒前
科研大捞发布了新的文献求助10
8秒前
老实易蓉发布了新的文献求助10
8秒前
科研通AI6.1应助shero采纳,获得10
8秒前
个性的长颈鹿完成签到,获得积分10
8秒前
8秒前
9秒前
隐形曼青应助嘟嘟采纳,获得10
10秒前
切尔顿发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
NexusExplorer应助xionggege采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
小厮完成签到,获得积分10
11秒前
11秒前
姚老表发布了新的文献求助50
11秒前
穆然发布了新的文献求助10
11秒前
斯文败类应助Ashley采纳,获得10
11秒前
11秒前
11秒前
12秒前
FashionBoy应助BlogY采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760818
求助须知:如何正确求助?哪些是违规求助? 5526191
关于积分的说明 15398334
捐赠科研通 4897505
什么是DOI,文献DOI怎么找? 2634199
邀请新用户注册赠送积分活动 1582335
关于科研通互助平台的介绍 1537676