Bidirectional prediction between wake velocity and surface pressure using deep learning techniques

物理 唤醒 机械 曲面(拓扑) 航空航天工程 几何学 数学 工程类
作者
Junle Liu,K.M. Shum,K.T. Tse,Gang Hu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (2) 被引量:1
标识
DOI:10.1063/5.0191568
摘要

The surface pressure and flow field of rectangular cylinders are of great importance in aerodynamic analyses of the cylinders. In general, it is easy to obtain one side of the information, either the surface pressure or the flow field, in reality. Deep learning (DL) techniques provide a new perspective to infer one side of the information from the other. Novel DL algorithms, specifically Dense Neuron Networks (DNN) and Graphic Attention Networks (GAT), are incorporated into the proposed high accuracy bidirectional prediction models in order to tackle the practical problems above. DNN employs a sequential compression architecture with a residual connection, and GAT applies an attention mechanism to update node value by connection edges defined by the relative position. The results demonstrate that in predicting surface pressure using wake velocity, GAT exhibits a 50% lower mean square error and more stable training progress than the DNN model. Predicting wake velocity using surface pressure yields accurate results for both DNN and GAT models. Specifically, the GAT structure shows better performance in capturing the vortex information near the trailing edge of the cylinder. Comparison of two models suggests that the GAT capability of rationally defining the interconnection of nodes through edges is advantageous in solving flow problems involving a spatially generalized physical mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
淡然的小蘑菇完成签到,获得积分10
2秒前
昂口3完成签到 ,获得积分10
5秒前
格物致知完成签到,获得积分10
6秒前
小朱朱完成签到,获得积分10
8秒前
Tricia应助林业光魔采纳,获得10
8秒前
8秒前
8秒前
9秒前
科盲TCB完成签到,获得积分10
9秒前
11秒前
张琳琳发布了新的文献求助10
11秒前
12秒前
Luohsheue完成签到,获得积分10
13秒前
CAOHOU应助乐尤琉采纳,获得10
15秒前
15秒前
清新的寄翠完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
lewis17发布了新的文献求助10
18秒前
可爱的函函应助张琳琳采纳,获得10
20秒前
勤恳的浩阑完成签到,获得积分10
22秒前
Lucas应助liuzf采纳,获得10
24秒前
小瓢虫完成签到,获得积分10
26秒前
FOB应助科研通管家采纳,获得10
28秒前
Ava应助科研通管家采纳,获得10
28秒前
SciGPT应助科研通管家采纳,获得10
28秒前
赘婿应助科研通管家采纳,获得30
28秒前
棋士应助科研通管家采纳,获得10
28秒前
FOB应助科研通管家采纳,获得10
29秒前
李健应助科研通管家采纳,获得10
29秒前
29秒前
科研通AI2S应助啃猫爪采纳,获得10
29秒前
斯文傲芙完成签到,获得积分10
29秒前
巧克力餐包完成签到,获得积分10
30秒前
所所应助慕乾采纳,获得10
32秒前
英姑应助lewis17采纳,获得10
33秒前
科研皇完成签到,获得积分10
33秒前
Lin.隽发布了新的文献求助10
34秒前
34秒前
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954395
求助须知:如何正确求助?哪些是违规求助? 3500338
关于积分的说明 11099177
捐赠科研通 3230855
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801673