Bidirectional prediction between wake velocity and surface pressure using deep learning techniques

物理 唤醒 机械 曲面(拓扑) 航空航天工程 几何学 数学 工程类
作者
Junle Liu,K.M. Shum,K.T. Tse,Gang Hu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (2) 被引量:1
标识
DOI:10.1063/5.0191568
摘要

The surface pressure and flow field of rectangular cylinders are of great importance in aerodynamic analyses of the cylinders. In general, it is easy to obtain one side of the information, either the surface pressure or the flow field, in reality. Deep learning (DL) techniques provide a new perspective to infer one side of the information from the other. Novel DL algorithms, specifically Dense Neuron Networks (DNN) and Graphic Attention Networks (GAT), are incorporated into the proposed high accuracy bidirectional prediction models in order to tackle the practical problems above. DNN employs a sequential compression architecture with a residual connection, and GAT applies an attention mechanism to update node value by connection edges defined by the relative position. The results demonstrate that in predicting surface pressure using wake velocity, GAT exhibits a 50% lower mean square error and more stable training progress than the DNN model. Predicting wake velocity using surface pressure yields accurate results for both DNN and GAT models. Specifically, the GAT structure shows better performance in capturing the vortex information near the trailing edge of the cylinder. Comparison of two models suggests that the GAT capability of rationally defining the interconnection of nodes through edges is advantageous in solving flow problems involving a spatially generalized physical mechanism.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
喵喵发布了新的文献求助10
刚刚
星辰大海应助羽霜采纳,获得10
1秒前
丢手绢完成签到,获得积分10
1秒前
赘婿应助寒冷猫咪采纳,获得10
1秒前
2秒前
2秒前
Bananana完成签到,获得积分10
3秒前
3秒前
4秒前
Jasper应助花生米采纳,获得10
4秒前
4秒前
宋依依发布了新的文献求助10
5秒前
5秒前
TIANHD发布了新的文献求助10
6秒前
科研通AI6应助lwq采纳,获得10
6秒前
6秒前
未来可期发布了新的文献求助10
7秒前
慕青应助踏实依玉采纳,获得10
7秒前
8秒前
糖糖完成签到,获得积分10
9秒前
燕麦大王发布了新的文献求助10
9秒前
xxxx关注了科研通微信公众号
10秒前
ss发布了新的文献求助10
11秒前
飞飞完成签到 ,获得积分10
12秒前
AishuangQi完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
星辰大海应助Polly采纳,获得10
14秒前
bb完成签到,获得积分10
16秒前
李健应助内啡呔采纳,获得10
17秒前
18秒前
18秒前
19秒前
默_古月发布了新的文献求助10
19秒前
19秒前
科目三应助ss采纳,获得10
19秒前
20秒前
科研通AI6应助乐宝采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637298
求助须知:如何正确求助?哪些是违规求助? 4743192
关于积分的说明 14998742
捐赠科研通 4795599
什么是DOI,文献DOI怎么找? 2562070
邀请新用户注册赠送积分活动 1521546
关于科研通互助平台的介绍 1481548