Optimizing Mendelian Randomization for Drug Prediction: Exploring Validity and Research Strategies

孟德尔随机化 药物试验 随机化 药品 计量经济学 计算机科学 孟德尔遗传 心理学 人工智能 机器学习 计算生物学 数学 医学 生物 临床试验 药理学 生物信息学 遗传学 遗传变异 基因 基因型
作者
Miaoran Zhang,Zhihao Xie,Aowen Tian,Zhiguo Su,Wenxuan Wang,Baiyu Qi,Jianli Yang,Jianping Wen,Peng Chen
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3966011/v1
摘要

Abstract Mendelian randomization (MR) plays an increasingly important role in drug discovery, yet its full potential and optimized framework for accurately predicting drug targets have not been firmly established. This study aimed to evaluate the efficacy of multiple MR models in predicting effective drug targets and to propose the optimal selection of models and instrumental variables for MR analyses. We meticulously constructed datasets using approved drug indications and a range of IVs, encompassing cis-expression quantitative trait loci (eQTLs) and protein quantitative trait loci (pQTLs). Our analytical approach incorporated diverse models, including Wald’s ratio, inverse-variance weighted (IVW), MR‒Egger, weighted median, and MRPRESSO, to evaluate MR's validity in drug target identification. The findings highlight MR efficacy, demonstrating approximately 70% accuracy in predicting effective drug targets. For the selection of instrumental variables, tissue-specific eQTLs in disease-related tissues emerged as superior IVs. We identified a r2 threshold below 0.3 as optimal for excluding redundant SNPs. To optimize the MR model, we recommend IVW as the primary computational model, complemented by the weighted median and MRPRESSO for robust analyses. This finding is consistent with current findings in the literature. Notably, a P value of < 0.05, without false discovery rate correction, is the most effective for identifying significant drug targets. With the optimal strategies we summarized, we identified new potential therapeutic targets for IBD and its subtypes, including ERAP1, HLA-DQA1, IRF5 and other genes. This study provides a refined, optimized strategy for MR application in drug discovery. Our insights into the selection of instrumental variables, model preferences, and parameter thresholds significantly enhance MR's predictive capacity, offering a comprehensive guide for future drug development research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
铭铭完成签到,获得积分10
刚刚
莫道桑榆完成签到,获得积分10
1秒前
ProfWang完成签到,获得积分10
1秒前
是我不得开心妍完成签到 ,获得积分10
2秒前
drlin完成签到,获得积分10
2秒前
可靠花生完成签到,获得积分10
2秒前
caiE完成签到,获得积分10
4秒前
mqthhh发布了新的文献求助10
5秒前
乖乖完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
英姑应助猫咪采纳,获得10
7秒前
威武的雨筠完成签到 ,获得积分10
8秒前
t6yur完成签到,获得积分10
8秒前
大个应助铭铭采纳,获得10
8秒前
Cari完成签到,获得积分10
8秒前
听风随影完成签到 ,获得积分10
9秒前
9秒前
10秒前
10秒前
ffl完成签到 ,获得积分10
15秒前
amwlsai完成签到,获得积分10
15秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
等待发卡关注了科研通微信公众号
18秒前
所所应助niu采纳,获得10
18秒前
19秒前
猪四郎完成签到 ,获得积分10
19秒前
20秒前
无花果应助t6yur采纳,获得10
20秒前
脑洞疼应助wjt采纳,获得10
22秒前
haiqin28发布了新的文献求助20
23秒前
23秒前
秋风发布了新的文献求助20
25秒前
猫咪发布了新的文献求助10
25秒前
乐乐应助唐尼医生采纳,获得10
26秒前
26秒前
Crane关注了科研通微信公众号
26秒前
30秒前
xxxg郭完成签到 ,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Co-Use of Alcohol and Cannabis: How Are They Related? 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5799370
求助须知:如何正确求助?哪些是违规求助? 5799235
关于积分的说明 15499826
捐赠科研通 4925783
什么是DOI,文献DOI怎么找? 2651643
邀请新用户注册赠送积分活动 1598701
关于科研通互助平台的介绍 1553583