Optimizing Mendelian Randomization for Drug Prediction: Exploring Validity and Research Strategies

孟德尔随机化 药物试验 随机化 药品 计量经济学 计算机科学 孟德尔遗传 心理学 人工智能 机器学习 计算生物学 数学 医学 生物 临床试验 药理学 生物信息学 遗传学 基因型 基因 遗传变异
作者
Miaoran Zhang,Zhihao Xie,Aowen Tian,Zhiguo Su,Wenxuan Wang,Baiyu Qi,Jianli Yang,Jianping Wen,Peng Chen
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3966011/v1
摘要

Abstract Mendelian randomization (MR) plays an increasingly important role in drug discovery, yet its full potential and optimized framework for accurately predicting drug targets have not been firmly established. This study aimed to evaluate the efficacy of multiple MR models in predicting effective drug targets and to propose the optimal selection of models and instrumental variables for MR analyses. We meticulously constructed datasets using approved drug indications and a range of IVs, encompassing cis-expression quantitative trait loci (eQTLs) and protein quantitative trait loci (pQTLs). Our analytical approach incorporated diverse models, including Wald’s ratio, inverse-variance weighted (IVW), MR‒Egger, weighted median, and MRPRESSO, to evaluate MR's validity in drug target identification. The findings highlight MR efficacy, demonstrating approximately 70% accuracy in predicting effective drug targets. For the selection of instrumental variables, tissue-specific eQTLs in disease-related tissues emerged as superior IVs. We identified a r2 threshold below 0.3 as optimal for excluding redundant SNPs. To optimize the MR model, we recommend IVW as the primary computational model, complemented by the weighted median and MRPRESSO for robust analyses. This finding is consistent with current findings in the literature. Notably, a P value of < 0.05, without false discovery rate correction, is the most effective for identifying significant drug targets. With the optimal strategies we summarized, we identified new potential therapeutic targets for IBD and its subtypes, including ERAP1, HLA-DQA1, IRF5 and other genes. This study provides a refined, optimized strategy for MR application in drug discovery. Our insights into the selection of instrumental variables, model preferences, and parameter thresholds significantly enhance MR's predictive capacity, offering a comprehensive guide for future drug development research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助123采纳,获得10
刚刚
木木木发布了新的文献求助10
1秒前
七只小羊发布了新的文献求助10
1秒前
Ava应助rachel03采纳,获得20
1秒前
周周完成签到,获得积分10
2秒前
yzy发布了新的文献求助10
2秒前
小张呢好发布了新的文献求助10
2秒前
猪猪hero发布了新的文献求助10
2秒前
华仔应助HOPE采纳,获得10
3秒前
希望天下0贩的0应助阿聪采纳,获得10
3秒前
如云发布了新的文献求助10
3秒前
搬砖ing发布了新的文献求助10
3秒前
qinxue发布了新的文献求助10
4秒前
lucky发布了新的文献求助10
4秒前
搞怪的幻梅完成签到,获得积分10
4秒前
怕黑的擎发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
wcuzhl完成签到,获得积分10
5秒前
年糕完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
甜美半山完成签到,获得积分10
6秒前
7秒前
慕青应助一区种子选手采纳,获得10
7秒前
7秒前
打打应助一区种子选手采纳,获得10
7秒前
感激不尽完成签到,获得积分10
7秒前
无花果应助如云采纳,获得10
7秒前
科目三应助hjy采纳,获得10
8秒前
坦率的平安完成签到,获得积分10
8秒前
bkagyin应助来来采纳,获得10
9秒前
9秒前
9秒前
9秒前
木耳发布了新的文献求助10
10秒前
李健的小迷弟应助王险达采纳,获得10
10秒前
科研小白完成签到,获得积分10
10秒前
无限一兰完成签到,获得积分10
11秒前
11秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580097
求助须知:如何正确求助?哪些是违规求助? 4664923
关于积分的说明 14754068
捐赠科研通 4606450
什么是DOI,文献DOI怎么找? 2527711
邀请新用户注册赠送积分活动 1497130
关于科研通互助平台的介绍 1466281