Optimizing Mendelian Randomization for Drug Prediction: Exploring Validity and Research Strategies

孟德尔随机化 药物试验 随机化 药品 计量经济学 计算机科学 孟德尔遗传 心理学 人工智能 机器学习 计算生物学 数学 医学 生物 临床试验 药理学 生物信息学 遗传学 基因型 基因 遗传变异
作者
Miaoran Zhang,Zhihao Xie,Aowen Tian,Zhiguo Su,Wenxuan Wang,Baiyu Qi,Jianli Yang,Jianping Wen,Peng Chen
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3966011/v1
摘要

Abstract Mendelian randomization (MR) plays an increasingly important role in drug discovery, yet its full potential and optimized framework for accurately predicting drug targets have not been firmly established. This study aimed to evaluate the efficacy of multiple MR models in predicting effective drug targets and to propose the optimal selection of models and instrumental variables for MR analyses. We meticulously constructed datasets using approved drug indications and a range of IVs, encompassing cis-expression quantitative trait loci (eQTLs) and protein quantitative trait loci (pQTLs). Our analytical approach incorporated diverse models, including Wald’s ratio, inverse-variance weighted (IVW), MR‒Egger, weighted median, and MRPRESSO, to evaluate MR's validity in drug target identification. The findings highlight MR efficacy, demonstrating approximately 70% accuracy in predicting effective drug targets. For the selection of instrumental variables, tissue-specific eQTLs in disease-related tissues emerged as superior IVs. We identified a r2 threshold below 0.3 as optimal for excluding redundant SNPs. To optimize the MR model, we recommend IVW as the primary computational model, complemented by the weighted median and MRPRESSO for robust analyses. This finding is consistent with current findings in the literature. Notably, a P value of < 0.05, without false discovery rate correction, is the most effective for identifying significant drug targets. With the optimal strategies we summarized, we identified new potential therapeutic targets for IBD and its subtypes, including ERAP1, HLA-DQA1, IRF5 and other genes. This study provides a refined, optimized strategy for MR application in drug discovery. Our insights into the selection of instrumental variables, model preferences, and parameter thresholds significantly enhance MR's predictive capacity, offering a comprehensive guide for future drug development research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张原铭完成签到,获得积分10
刚刚
刚刚
怪味薯片完成签到,获得积分20
1秒前
1秒前
avalanche应助香樟沐雪采纳,获得50
1秒前
龙江游侠发布了新的文献求助10
4秒前
4秒前
110o发布了新的文献求助10
7秒前
愤怒的豌豆完成签到,获得积分10
7秒前
qiuxin完成签到,获得积分10
7秒前
John发布了新的文献求助10
7秒前
curtainai完成签到,获得积分10
7秒前
joe完成签到,获得积分10
8秒前
爱看文献的小恐龙完成签到,获得积分10
8秒前
陶醉大侠完成签到,获得积分10
8秒前
8秒前
小牙完成签到 ,获得积分10
9秒前
houzhongxiao发布了新的文献求助10
9秒前
11秒前
Hello应助可耐的香芦采纳,获得10
11秒前
句点完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
LuoYR@SZU完成签到,获得积分10
14秒前
14秒前
外向含之完成签到,获得积分10
15秒前
畅快山兰发布了新的文献求助10
15秒前
应万言发布了新的文献求助100
15秒前
16秒前
周媛媛完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
17秒前
17秒前
demoliu发布了新的文献求助10
17秒前
17秒前
自由的中蓝完成签到 ,获得积分10
18秒前
小黎完成签到,获得积分10
18秒前
cmh完成签到 ,获得积分10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418877
求助须知:如何正确求助?哪些是违规求助? 4534462
关于积分的说明 14144391
捐赠科研通 4450753
什么是DOI,文献DOI怎么找? 2441377
邀请新用户注册赠送积分活动 1433091
关于科研通互助平台的介绍 1410502