Optimizing Mendelian Randomization for Drug Prediction: Exploring Validity and Research Strategies

孟德尔随机化 药物试验 随机化 计量经济学 计算机科学 孟德尔遗传 心理学 人工智能 计算生物学 数学 生物 临床试验 生物信息学 遗传学 遗传变异 基因 基因型
作者
Miaoran Zhang,Zhihao Xie,Aowen Tian,Zhiguo Su,Wenxuan Wang,Baiyu Qi,Jianli Yang,Jianping Wen,Peng Chen
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3966011/v1
摘要

Abstract Mendelian randomization (MR) plays an increasingly important role in drug discovery, yet its full potential and optimized framework for accurately predicting drug targets have not been firmly established. This study aimed to evaluate the efficacy of multiple MR models in predicting effective drug targets and to propose the optimal selection of models and instrumental variables for MR analyses. We meticulously constructed datasets using approved drug indications and a range of IVs, encompassing cis-expression quantitative trait loci (eQTLs) and protein quantitative trait loci (pQTLs). Our analytical approach incorporated diverse models, including Wald’s ratio, inverse-variance weighted (IVW), MR‒Egger, weighted median, and MRPRESSO, to evaluate MR's validity in drug target identification. The findings highlight MR efficacy, demonstrating approximately 70% accuracy in predicting effective drug targets. For the selection of instrumental variables, tissue-specific eQTLs in disease-related tissues emerged as superior IVs. We identified a r 2 threshold below 0.3 as optimal for excluding redundant SNPs. To optimize the MR model, we recommend IVW as the primary computational model, complemented by the weighted median and MRPRESSO for robust analyses. This finding is consistent with current findings in the literature. Notably, a P value of < 0.05, without false discovery rate correction, is the most effective for identifying significant drug targets. With the optimal strategies we summarized, we identified new potential therapeutic targets for IBD and its subtypes, including ERAP1, HLA-DQA1, IRF5 and other genes. This study provides a refined, optimized strategy for MR application in drug discovery. Our insights into the selection of instrumental variables, model preferences, and parameter thresholds significantly enhance MR's predictive capacity, offering a comprehensive guide for future drug development research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Crazyalien关注了科研通微信公众号
1秒前
小蘑菇应助john采纳,获得10
2秒前
3秒前
4秒前
4秒前
酷炫的黄豆完成签到 ,获得积分10
4秒前
香蕉闭月完成签到,获得积分10
5秒前
装好心完成签到,获得积分10
5秒前
5秒前
默默完成签到,获得积分10
5秒前
FashionBoy应助替勾勾采纳,获得10
6秒前
6秒前
7秒前
orixero应助Eyring_go采纳,获得50
8秒前
8秒前
万书白发布了新的文献求助10
8秒前
雪芜发布了新的文献求助10
9秒前
冒险寻羊完成签到,获得积分10
9秒前
10秒前
lc发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
明月发布了新的文献求助10
13秒前
Crazyalien发布了新的文献求助10
14秒前
dadawang发布了新的文献求助10
14秒前
英姑应助霄洒瞎客采纳,获得10
15秒前
搞怪夏天完成签到,获得积分20
15秒前
psychedeng完成签到 ,获得积分10
15秒前
爱吃西瓜发布了新的文献求助10
16秒前
16秒前
青人完成签到 ,获得积分10
16秒前
学术小白发布了新的文献求助10
17秒前
17秒前
18秒前
王大伟完成签到,获得积分10
18秒前
18秒前
Liam发布了新的文献求助30
19秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124390
求助须知:如何正确求助?哪些是违规求助? 2774743
关于积分的说明 7723567
捐赠科研通 2430180
什么是DOI,文献DOI怎么找? 1290974
科研通“疑难数据库(出版商)”最低求助积分说明 622006
版权声明 600297