亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Image retrieval using unsupervised prompt learning and regional attention

计算机科学 人工智能 水准点(测量) 特征学习 模式识别(心理学) 维数之咒 特征(语言学) 图像检索 对象(语法) 降维 注释 机器学习 特征提取 特征向量 图像(数学) 语言学 哲学 大地测量学 地理
作者
Bo-Jian Zhang,Guanghai Liu,Zuoyong Li
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:247: 122913-122913 被引量:4
标识
DOI:10.1016/j.eswa.2023.122913
摘要

Identifying the target object can produce more accurate and discriminating feature representations. It can significantly improve large-scale instance-level image retrieval performance. However, it is usually difficult to obtain annotation information of all target objects in a dataset by manual annotation, which makes it challenging to automatically identify the target object. To solve this problem, we propose a novel method to recognize the target object based on unsupervised prompt learning and regional attention (PLRA) rather than manual annotation. It includes three highlights: (1) We propose an unsupervised prompt learning method to identify the target object, which can reconstruct the deep features by mining the prompt information and then design prompt factors to identify the target object based on the reconstructed features. (2) We propose a new regional attention method to extract distinguishable features of the target object. This method captures important feature regions through four dimensions: global, local, spatial and channel. It can improve the diversity and discriminability of the representation. (3) We propose a general hybrid PCA-whitening (HPW) method based on multi-parameter learning and feature fusion, to trade-off feature dimensionality and retrieval performance. This method can significantly improve the performance and reduce the vector dimensionality in a plug-and-play manner. We conducted comprehensive experiments on five benchmark datasets, and the results show that the proposed method significantly outperforms existing state-of-the-art methods based on unsupervised feature aggregation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
axin发布了新的文献求助10
3秒前
已知中的未知完成签到 ,获得积分10
14秒前
15秒前
西扬完成签到 ,获得积分10
15秒前
涵涵韩完成签到 ,获得积分20
16秒前
Doki发布了新的文献求助30
20秒前
斯文的凝珍完成签到,获得积分10
21秒前
ceeray23发布了新的文献求助20
21秒前
Ray完成签到 ,获得积分10
22秒前
yzj完成签到 ,获得积分10
25秒前
28秒前
SCINEXUS完成签到,获得积分0
31秒前
34秒前
哈哈完成签到,获得积分10
39秒前
Doki完成签到,获得积分20
40秒前
充电宝应助Ricky_Ao采纳,获得10
43秒前
ceeray23发布了新的文献求助20
44秒前
汉堡包应助科研通管家采纳,获得10
46秒前
46秒前
嘻嘻哈哈应助科研通管家采纳,获得10
46秒前
我是老大应助科研通管家采纳,获得10
46秒前
51秒前
骆西西完成签到 ,获得积分10
1分钟前
1分钟前
347u完成签到 ,获得积分10
1分钟前
1分钟前
明理代荷发布了新的文献求助30
1分钟前
忧郁小鸽子完成签到,获得积分10
1分钟前
笼中鸟完成签到,获得积分10
1分钟前
1分钟前
大模型应助红娘采纳,获得10
1分钟前
1分钟前
毛果芸香碱完成签到 ,获得积分10
1分钟前
七色光完成签到,获得积分10
1分钟前
天天快乐应助能用就行采纳,获得10
1分钟前
明理代荷完成签到,获得积分10
1分钟前
Lucas应助Jackson采纳,获得10
1分钟前
lll驳回了888应助
2分钟前
2分钟前
贱小贱完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5376254
求助须知:如何正确求助?哪些是违规求助? 4501333
关于积分的说明 14012802
捐赠科研通 4409093
什么是DOI,文献DOI怎么找? 2422059
邀请新用户注册赠送积分活动 1414807
关于科研通互助平台的介绍 1391686