Image retrieval using unsupervised prompt learning and regional attention

计算机科学 人工智能 水准点(测量) 特征学习 模式识别(心理学) 维数之咒 特征(语言学) 图像检索 对象(语法) 降维 注释 机器学习 特征提取 特征向量 图像(数学) 语言学 哲学 大地测量学 地理
作者
Bo-Jian Zhang,Guanghai Liu,Zuoyong Li
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:247: 122913-122913 被引量:4
标识
DOI:10.1016/j.eswa.2023.122913
摘要

Identifying the target object can produce more accurate and discriminating feature representations. It can significantly improve large-scale instance-level image retrieval performance. However, it is usually difficult to obtain annotation information of all target objects in a dataset by manual annotation, which makes it challenging to automatically identify the target object. To solve this problem, we propose a novel method to recognize the target object based on unsupervised prompt learning and regional attention (PLRA) rather than manual annotation. It includes three highlights: (1) We propose an unsupervised prompt learning method to identify the target object, which can reconstruct the deep features by mining the prompt information and then design prompt factors to identify the target object based on the reconstructed features. (2) We propose a new regional attention method to extract distinguishable features of the target object. This method captures important feature regions through four dimensions: global, local, spatial and channel. It can improve the diversity and discriminability of the representation. (3) We propose a general hybrid PCA-whitening (HPW) method based on multi-parameter learning and feature fusion, to trade-off feature dimensionality and retrieval performance. This method can significantly improve the performance and reduce the vector dimensionality in a plug-and-play manner. We conducted comprehensive experiments on five benchmark datasets, and the results show that the proposed method significantly outperforms existing state-of-the-art methods based on unsupervised feature aggregation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
可爱番茄完成签到 ,获得积分10
2秒前
PlightG发布了新的文献求助10
3秒前
sanqifeng完成签到,获得积分10
6秒前
7秒前
闻风听雨发布了新的文献求助10
7秒前
8秒前
海带发布了新的文献求助10
8秒前
8秒前
小二郎应助ok采纳,获得10
9秒前
10秒前
朴树朋友完成签到,获得积分10
11秒前
12秒前
dengdeng发布了新的文献求助10
13秒前
MissXia完成签到,获得积分10
13秒前
14秒前
bsyaa发布了新的文献求助10
15秒前
guoli发布了新的文献求助10
17秒前
17秒前
正直千兰完成签到,获得积分10
18秒前
saber完成签到,获得积分10
21秒前
21秒前
高高菠萝完成签到 ,获得积分10
22秒前
22秒前
建建完成签到,获得积分10
23秒前
yym发布了新的文献求助10
24秒前
24秒前
25秒前
26秒前
26秒前
清脆水卉完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
27秒前
单薄店员发布了新的文献求助10
29秒前
Ava应助海带采纳,获得10
35秒前
36秒前
Ava应助科研通管家采纳,获得30
36秒前
zzzzzzzz应助科研通管家采纳,获得10
36秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010682
求助须知:如何正确求助?哪些是违规求助? 3550411
关于积分的说明 11305615
捐赠科研通 3284751
什么是DOI,文献DOI怎么找? 1810846
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811499