摘要
Chapter 5 Structural Modifications on Germanosilicates Ondřej Veselý, Ondřej Veselý Charles University, Charles University Center of Advanced Materials, Faculty of Science, Department of Physical and Macromolecular Chemistry, Hlavova 8, Prague, 12843 Czech RepublicSearch for more papers by this authorMaksym Opanasenko, Maksym Opanasenko Charles University, Charles University Center of Advanced Materials, Faculty of Science, Department of Physical and Macromolecular Chemistry, Hlavova 8, Prague, 12843 Czech RepublicSearch for more papers by this authorJiří Čejka, Jiří Čejka Charles University, Charles University Center of Advanced Materials, Faculty of Science, Department of Physical and Macromolecular Chemistry, Hlavova 8, Prague, 12843 Czech RepublicSearch for more papers by this author Ondřej Veselý, Ondřej Veselý Charles University, Charles University Center of Advanced Materials, Faculty of Science, Department of Physical and Macromolecular Chemistry, Hlavova 8, Prague, 12843 Czech RepublicSearch for more papers by this authorMaksym Opanasenko, Maksym Opanasenko Charles University, Charles University Center of Advanced Materials, Faculty of Science, Department of Physical and Macromolecular Chemistry, Hlavova 8, Prague, 12843 Czech RepublicSearch for more papers by this authorJiří Čejka, Jiří Čejka Charles University, Charles University Center of Advanced Materials, Faculty of Science, Department of Physical and Macromolecular Chemistry, Hlavova 8, Prague, 12843 Czech RepublicSearch for more papers by this author Book Editor(s):Peng Wu, Peng Wu East China Normal University, North Zhongshan Rd. No. 3663, Shanghai, 200062 ChinaSearch for more papers by this authorHao Xu, Hao Xu East China Normal University, North Zhongshan Rd. No. 3663, Shanghai, 200062 ChinaSearch for more papers by this author First published: 08 March 2024 https://doi.org/10.1002/9783527839384.ch5 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary This chapter examines the unique properties of germanosilicate zeolites which not only dictate their hydrolytic stability but also predetermine them for highly-controlled post-synthetic structural transformations and producing new types of porous materials. The germanosilicate zeolites commonly suffer from decreased hydrolytic stability compared to silicates and aluminosilicates. On one hand, the germanosilicates are susceptible to structural degradation in moist environment due to the weaker nature of the GeO bonds. On the other hand, the framework germanium shows pronounced preference for certain framework positions (e.g. double-4-rings) which enables to carry out the hydrolysis selectively. The selective hydrolysis of germanosilicate zeolites yields low-dimensional silicate materials, such as layered zeolite precursors. The chapter further demonstrates application of the zeolite layers as building blocks or starting compounds for preparation of materials with highly controlled chemical and structural properties via methods of intercalation, pillaring or the ADOR transformation. References Database of Zeolite Structures . http://www.iza-structure.org/databases . Google Scholar Li , X. and Deem , M.W. ( 2014 ). Why zeolites have so few seven-membered rings . J. Phys. Chem. C 118 ( 29 ): 15835 – 15839 . 10.1021/jp504143r CASGoogle Scholar Burel , L. , Kasian , N. , and Tuel , A. ( 2014 ). Quasi all-silica zeolite obtained by isomorphous degermanation of an as-made germanium-containing precursor . Angew. Chem. Int. Ed. 53 ( 5 ): 1360 – 1363 . 10.1002/anie.201306744 CASPubMedWeb of Science®Google Scholar Du , H. , Fairbridge , C. , Yang , H. , and Ring , Z. ( 2005 ). The chemistry of selective ring-opening catalysts . Appl. Catal. Gen. 294 ( 1 ): 1 – 21 . 10.1016/j.apcata.2005.06.033 CASGoogle Scholar Corma , A. , Iborra , S. , and Velty , A. ( 2007 ). Chemical routes for the transformation of biomass into chemicals . Chem. Rev. 107 ( 6 ): 2411 – 2502 . 10.1021/cr050989d CASPubMedWeb of Science®Google Scholar Moliner , M. , Rey , F. , and Corma , A. ( 2013 ). Towards the rational design of efficient organic structure-directing agents for zeolite synthesis . Angew. Chem. Int. Ed. 52 ( 52 ): 13880 – 13889 . 10.1002/anie.201304713 CASPubMedWeb of Science®Google Scholar Zones , S.I. ( 2011 ). Translating new materials discoveries in zeolite research to commercial manufacture . Microporous Mesoporous Mater. 144 ( 1 ): 1 – 8 . 10.1016/j.micromeso.2011.03.039 CASGoogle Scholar Li , Y. and Yu , J. ( 2014 ). New stories of zeolite structures: their descriptions, determinations, predictions, and evaluations . Chem. Rev. 114 ( 14 ): 7268 – 7316 . 10.1021/cr500010r CASPubMedWeb of Science®Google Scholar Opanasenko , M. , Shamzhy , M. , Wang , Y. et al. ( 2020 ). Synthesis and post-synthesis transformation of germanosilicate zeolites . Angew. Chem. Int. Ed. 59 ( 44 ): 19380 – 19389 . 10.1002/anie.202005776 CASPubMedWeb of Science®Google Scholar Corma , A. , Díaz-Cabañas , M.J. , Jiang , J. et al. ( 2010 ). Extra-large pore zeolite (ITQ-40) with the lowest framework density containing double four- and double three-rings . Proc. Natl. Acad. Sci. 107 ( 32 ): 13997 – 14002 . 10.1073/pnas.1003009107 CASPubMedWeb of Science®Google Scholar Jiang , J. , Jorda , J.L. , Diaz-Cabanas , M.J. et al. ( 2010 ). The synthesis of an extra-large-pore zeolite with double three-ring building units and a low framework density . Angew. Chem. Int. Ed. 49 ( 29 ): 4986 – 4988 . 10.1002/anie.201001506 CASPubMedWeb of Science®Google Scholar Shvets , O.V. , Zukal , A. , Kasian , N. et al. ( 2008 ). The role of crystallization parameters for the synthesis of germanosilicate with UTL topology . Chem. Eur. J. 14 ( 32 ): 10134 – 10140 . 10.1002/chem.200800416 CASPubMedWeb of Science®Google Scholar Paillaud , J.-L. , Harbuzaru , B. , Patarin , J. , and Bats , N. ( 2004 ). Extra-large-pore zeolites with two-dimensional channels formed by 14 and 12 rings . Science 304 ( 5673 ): 990 . 10.1126/science.1098242 CASPubMedWeb of Science®Google Scholar Kang , J.H. , Xie , D. , Zones , S.I. , and Davis , M.E. ( 2019 ). Transformation of extra-large pore germanosilicate CIT-13 molecular sieve into extra-large pore CIT-5 molecular sieve . Chem. Mater. 31 ( 23 ): 9777 – 9787 . 10.1021/acs.chemmater.9b03675 CASGoogle Scholar Corma , A. , Navarro , M.T. , Rey , F. et al. ( 2001 ). Pure polymorph C of zeolite beta synthesized by using framework isomorphous substitution as a structure-directing mechanism . Angew. Chem. Int. Ed. Engl. 40 : 2277 – 2280 . 10.1002/1521-3773(20010618)40:12<2277::AID-ANIE2277>3.0.CO;2-O CASPubMedWeb of Science®Google Scholar Corma , A. , Rey , F. , Valencia , S. et al. ( 2003 ). A zeolite with interconnected 8-, 10- and 12-ring pores and its unique catalytic selectivity . Nat. Mater. 2 ( 7 ): 493 – 497 . 10.1038/nmat921 CASPubMedGoogle Scholar Corma , A. , Puche , M. , Rey , F. et al. ( 2003 ). A zeolite structure (ITQ-13) with three sets of medium-pore crossing channels formed by 9- and 10-rings . Angew. Chem. Int. Ed. 42 ( 10 ): 1156 – 1159 . 10.1002/anie.200390304 CASPubMedWeb of Science®Google Scholar Lorgouilloux , Y. , Dodin , M. , Mugnaioli , E. et al. ( 2014 ). IM-17: a new zeolitic material, synthesis and structure elucidation from electron diffraction ADT data and Rietveld analysis . RSC Adv. 4 ( 37 ): 19440 – 19449 . 10.1039/c4ra01383b CASGoogle Scholar Castañeda , R. , Corma , A. , Fornés , V. et al. ( 2003 ). Synthesis of a new zeolite structure ITQ-24, with intersecting 10- and 12-membered ring pores . J. Am. Chem. Soc. 125 ( 26 ): 7820 – 7821 . 10.1021/ja035534p CASPubMedGoogle Scholar Schaack , B.B. , Schrader , W. , and Schüth , F. ( 2009 ). How are heteroelements (Ga and Ge) incorporated in silicate oligomers? Chem. Eur. J. 15 ( 24 ): 5920 – 5925 . 10.1002/chem.200900472 CASPubMedWeb of Science®Google Scholar Schaack , B.B. , Schrader , W. , and Schueth , T. ( 2008 ). Detection of structural elements of different zeolites in nucleating solutions by electrospray ionization mass spectrometry . Angew. Chem. Int. Ed. 47 ( 47 ): 9092 – 9095 . 10.1002/anie.200803007 CASPubMedGoogle Scholar Sastre , G. , Pulido , A. , and Corma , A. ( 2005 ). An attempt to predict and rationalize relative stabilities and preferential germanium location in Si/Ge zeolites . Microporous Mesoporous Mater. 82 ( 1–2 ): 159 – 163 . 10.1016/j.micromeso.2005.01.021 CASGoogle Scholar Blasco , T. , Corma , A. , Díaz-Cabañas , M.J. et al. ( 2002 ). Preferential location of Ge in the double four-membered ring units of ITQ-7 zeolite . J. Phys. Chem. B. 106 ( 10 ): 2634 – 2642 . 10.1021/jp013302b CASGoogle Scholar Kasian , N. , Tuel , A. , Verheyen , E. et al. ( 2014 ). NMR evidence for specific germanium siting in IM-12 zeolite . Chem. Mater. 26 ( 19 ): 5556 – 5565 . 10.1021/cm502525w CASGoogle Scholar Sastre , G. and Corma , A. ( 2010 ). Predicting structural feasibility of silica and Germania zeolites . J. Phys. Chem. C 114 ( 3 ): 1667 – 1673 . 10.1021/jp909348s CASGoogle Scholar Cantín , Á. , Corma , A. , Díaz-Cabañas , M.J. et al. ( 2006 ). Synthesis and characterization of the all-silica pure polymorph C and an enriched polymorph B intergrowth of zeolite beta . Angew. Chem. Int. Ed. 45 ( 47 ): 8013 – 8015 . 10.1002/anie.200603027 CASPubMedWeb of Science®Google Scholar Verheyen , E. , Joos , L. , Van Havenbergh , K. et al. ( 2012 ). Design of zeolite by inverse sigma transformation . Nat. Mater. 11 ( 12 ): 1059 – 1064 . 10.1038/nmat3455 CASPubMedGoogle Scholar Roth , W.J. , Shvets , O.V. , Shamzhy , M. et al. ( 2011 ). Postsynthesis transformation of three-dimensional framework into a lamellar zeolite with modifiable architecture . J. Am. Chem. Soc. 133 ( 16 ): 6130 – 6133 . 10.1021/ja200741r CASPubMedGoogle Scholar Villaescusa , L.A. and Camblor , M.A. ( 2016 ). Framework reduction of GeO2 zeolites during calcination . Chem. Mater. 28 ( 20 ): 7544 – 7550 . 10.1021/acs.chemmater.6b03682 CASGoogle Scholar Chlubna , P. , Roth , W.J. , Greer , H.F. et al. ( 2013 ). 3D to 2D routes to ultrathin and expanded zeolitic materials . Chem. Mater. 25 ( 4 ): 542 – 547 . 10.1021/cm303260z CASGoogle Scholar Lei , J.-C. , Zhang , X. , and Zhou , Z. ( 2015 ). Recent advances in MXene: preparation, properties, and applications . Front. Phys. 10 ( 3 ): 276 – 286 . 10.1007/s11467-015-0493-x Web of Science®Google Scholar Jin , M. , Veselý , O. , Heard , C.J. et al. ( 2021 ). The role of water loading and germanium content in germanosilicate hydrolysis . J. Phys. Chem. C 125 ( 43 ): 23744 – 23757 . 10.1021/acs.jpcc.1c06873 CASGoogle Scholar Morris , S.A. , Bignami , G.P.M. , Tian , Y. et al. ( 2017 ). In situ solid-state NMR and XRD studies of the ADOR process and the unusual structure of zeolite IPC-6 . Nat. Chem. 9 ( 10 ): 1012 – 1018 . 10.1038/nchem.2761 CASPubMedGoogle Scholar Bignami , G.P.M. , Dawson , D.M. , Seymour , V.R. et al. ( 2017 ). Synthesis, isotopic enrichment, and solid-state NMR characterization of zeolites derived from the assembly, disassembly, organization, reassembly process . J. Am. Chem. Soc. 139 ( 14 ): 5140 – 5148 . 10.1021/jacs.7b00386 CASPubMedGoogle Scholar Henkelis , S.E. , Mazur , M. , Rice , C.M. et al. ( 2019 ). Kinetics and mechanism of the hydrolysis and rearrangement processes within the assembly–disassembly–organization–reassembly synthesis of zeolites . J. Am. Chem. Soc. 141 ( 10 ): 4453 – 4459 . 10.1021/jacs.9b00643 CASPubMedGoogle Scholar Mazur , M. , Chlubná-Eliášová , P. , Roth , W.J. , and Čejka , J. ( 2014 ). Intercalation chemistry of layered zeolite precursor IPC-1P . Catal. Today 227 : 37 – 44 . 10.1016/j.cattod.2013.10.051 CASWeb of Science®Google Scholar Mazur , M. , Wheatley , P.S. , Navarro , M. et al. ( 2016 ). Synthesis of ‘unfeasible’ zeolites . Nat. Chem. 8 ( 1 ): 58 – 62 . 10.1038/nchem.2374 CASPubMedGoogle Scholar Roth , W.J. , Nachtigall , P. , Morris , R.E. et al. ( 2013 ). A family of zeolites with controlled pore size prepared using a top-down method . Nat. Chem. 5 ( 7 ): 628 – 633 . 10.1038/nchem.1662 CASPubMedWeb of Science®Google Scholar Shamzhy , M. , Mazur , M. , Opanasenko , M. et al. ( 2014 ). Swelling and pillaring of the layered precursor IPC-1P: tiny details determine everything . Dalton Trans. 43 ( 27 ): 10548 – 10557 . 10.1039/c4dt00165f CASPubMedGoogle Scholar Smith , R.L. , Eliášová , P. , Mazur , M. et al. ( 2014 ). Atomic force microscopy of novel zeolitic materials prepared by top-down synthesis and ADOR mechanism . Chem. Eur. J. 20 ( 33 ): 10446 – 10450 . 10.1002/chem.201402887 CASPubMedWeb of Science®Google Scholar Kresge , C.T. and Roth , W.J. ( 2013 ). The discovery of mesoporous molecular sieves from the twenty year perspective . Chem. Soc. Rev. 42 ( 9 ): 3663 – 3670 . 10.1039/c3cs60016e CASPubMedWeb of Science®Google Scholar Chlubná , P. , Roth , W.J. , Zukal , A. et al. ( 2012 ). Pillared MWW zeolites MCM-36 prepared by swelling MCM-22P in concentrated surfactant solutions . Catal. Today 179 ( 1 ): 35 – 42 . 10.1016/j.cattod.2011.06.035 CASGoogle Scholar Barth , J.-O. , Jentys , A. , Kornatowski , J. , and Lercher , J.A. ( 2004 ). Control of acid–base properties of new nanocomposite derivatives of MCM-36 by mixed oxide pillaring . Chem. Mater. 16 ( 4 ): 724 – 730 . 10.1021/cm0349607 CASGoogle Scholar Přech , J. , Eliášová , P. , Aldhayan , D. , and Kubů , M. ( 2015 ). Epoxidation of bulky organic molecules over pillared titanosilicates . Catal. Today 243 : 134 – 140 . 10.1016/j.cattod.2014.07.002 CASWeb of Science®Google Scholar Roth , W.J. , Makowski , W. , Marszalek , B. et al. ( 2014 ). Activity enhancement of zeolite MCM-22 by interlayer expansion enabling higher Ce loading and room temperature CO oxidation . J. Mater. Chem. A 2 ( 38 ): 15722 – 15725 . 10.1039/C4TA03308F CASGoogle Scholar Přech , J. and Čejka , J. ( 2016 ). UTL titanosilicate: an extra-large pore epoxidation catalyst with tunable textural properties . Catal. Today 277 : 2 – 8 . 10.1016/j.cattod.2015.09.036 CASWeb of Science®Google Scholar Opanasenko , M. , Shamzhy , M. , Yu , F. et al. ( 2016 ). Zeolite-derived hybrid materials with adjustable organic pillars . Chem. Sci. 7 ( 6 ): 3589 – 3601 . 10.1039/C5SC04602E CASPubMedGoogle Scholar Opanasenko , M. , Parker , W.O.N. , Shamzhy , M. et al. ( 2014 ). Hierarchical hybrid organic–inorganic materials with tunable textural properties obtained using zeolitic-layered precursor . J. Am. Chem. Soc. 136 ( 6 ): 2511 – 2519 . 10.1021/ja410844f CASPubMedGoogle Scholar Yang , B. , Jiang , J.-G. , Xu , H. et al. ( 2018 ). Synthesis of large-pore ECNU-19 material (12 × 8-R) via interlayer-expansion of HUS-2 lamellar silicate . Chin. J. Chem. 36 ( 3 ): 227 – 232 . 10.1002/cjoc.201700607 CASGoogle Scholar Eliášová , P. , Opanasenko , M. , Wheatley , P.S. et al. ( 2015 ). The ADOR mechanism for the synthesis of new zeolites . Chem. Soc. Rev. 44 ( 20 ): 7177 – 7206 . 10.1039/C5CS00045A CASPubMedGoogle Scholar Zhou , Y. , Kadam , S.A. , Shamzhy , M. et al. ( 2019 ). Isoreticular UTL-derived zeolites as model materials for probing pore size–activity relationship . ACS Catal. 9 ( 6 ): 5136 – 5146 . 10.1021/acscatal.9b00950 CASGoogle Scholar Kang , J.H. , Xie , D. , Zones , S.I. , and Davis , M.E. ( 2020 ). Fluoride-free synthesis of germanosilicate CIT-13 and its inverse sigma transformation to form CIT-14 . Chem. Mater. 32 ( 5 ): 2014 – 2024 . 10.1021/acs.chemmater.9b05072 CASGoogle Scholar Shvets , O.V. , Shamzhy , M.V. , Yaremov , P.S. et al. ( 2011 ). Isomorphous introduction of boron in germanosilicate zeolites with UTL topology . Chem. Mater. 23 ( 10 ): 2573 – 2585 . 10.1021/cm200105f CASGoogle Scholar Wheatley , P.S. , Chlubná-Eliášová , P. , Greer , H. et al. ( 2014 ). Zeolites with continuously tuneable porosity . Angew. Chem. 126 ( 48 ): 13426 – 13430 . 10.1002/ange.201407676 Google Scholar Li , Y. , Yu , J.H. , and Xu , R.R. ( 2013 ). Criteria for zeolite frameworks realizable for target synthesis . Angew. Chem. Int. Ed. 52 ( 6 ): 1673 – 1677 . 10.1002/anie.201206340 CASPubMedWeb of Science®Google Scholar Wu , P. , Ruan , J. , Wang , L. et al. ( 2008 ). Methodology for synthesizing crystalline metallosilicates with expanded pore windows through molecular alkoxysilylation of zeolitic lamellar precursors . J. Am. Chem. Soc. 130 ( 26 ): 8178 – 8187 . 10.1021/ja0758739 CASPubMedWeb of Science®Google Scholar Schreyeck , L. , Caullet , P. , Mougenel , J.C. et al. ( 1996 ). PREFER: a new layered (alumino) silicate precursor of FER-type zeolite . Microporous Mater. 6 ( 5–6 ): 259 – 271 . 10.1016/0927-6513(96)00032-6 CASGoogle Scholar Zhang , J. , Veselý , O. , Tošner , Z. et al. ( 2021 ). Toward controlling disassembly step within the ADOR process for the synthesis of zeolites . Chem. Mater. 33 ( 4 ): 1228 – 1237 . 10.1021/acs.chemmater.0c03993 CASGoogle Scholar Mazur , M. , Kubů , M. , Wheatley , P.S. , and Eliášová , P. ( 2015 ). Germanosilicate UTL and its rich chemistry of solid-state transformations towards IPC-2 (OKO) zeolite . Catal. Today 243 : 23 – 31 . 10.1016/j.cattod.2014.08.018 CASGoogle Scholar Mazur , M. , Kasneryk , V. , Přech , J. et al. ( 2018 ). Zeolite framework functionalisation by tuneable incorporation of various metals into the IPC-2 zeolite . Inorg. Chem. Front. 5 ( 11 ): 2746 – 2755 . 10.1039/C8QI00732B CASGoogle Scholar Liu , X. , Mao , W. , Jiang , J. et al. ( 2019 ). Topotactic conversion of alkali-treated intergrown germanosilicate CIT-13 into single-crystalline ECNU-21 zeolite as shape-selective catalyst for ethylene oxide hydration . Chem. Eur. J. 25 ( 17 ): 4520 – 4529 . 10.1002/chem.201900173 CASPubMedGoogle Scholar Firth , D.S. , Morris , S.A. , Wheatley , P.S. et al. ( 2017 ). Assembly–disassembly–organization–reassembly synthesis of zeolites based on cfi-type layers . Chem. Mater. 29 ( 13 ): 5605 – 5611 . 10.1021/acs.chemmater.7b01181 CASGoogle Scholar Liu , X. , Luo , Y. , Mao , W. et al. ( 2020 ). 3D electron diffraction unravels the new zeolite ECNU-23 from the “pure” powder sample of ECNU-21 . Angew. Chem. Int. Ed. 59 ( 3 ): 1166 – 1170 . 10.1002/anie.201912488 CASPubMedWeb of Science®Google Scholar Kasneryk , V. , Shamzhy , M. , Opanasenko , M. et al. ( 2018 ). Insight into the ADOR zeolite-to-zeolite transformation: the UOV case . Dalton Trans. 47 ( 9 ): 3084 – 3092 . 10.1039/C7DT03751A CASPubMedGoogle Scholar Kasneryk , V. , Opanasenko , M. , Shamzhy , M. et al. ( 2017 ). Consecutive interlayer disassembly–reassembly during alumination of UOV zeolites: insight into the mechanism . J. Mater. Chem. A 5 ( 43 ): 22576 – 22587 . 10.1039/C7TA05935C CASGoogle Scholar Kasneryk , V. , Shamzhy , M. , Opanasenko , M. et al. ( 2017 ). Expansion of the ADOR strategy for the synthesis of zeolites: the synthesis of IPC-12 from zeolite UOV . Angew. Chem. Int. Ed. 56 ( 15 ): 4324 – 4327 . 10.1002/anie.201700590 CASPubMedWeb of Science®Google Scholar Yuan , R. , Claes , N. , Verheyen , E. et al. ( 2016 ). Synthesis of an IWW-type germanosilicate zeolite using 5-azonia-spiro[4,4]nonane as a structure directing agent . New J. Chem. 40 ( 5 ): 4319 – 4324 . 10.1039/C5NJ03094C CASGoogle Scholar Kasneryk , V. , Shamzhy , M. , Zhou , J. et al. ( 2019 ). Vapour-phase-transport rearrangement technique for the synthesis of new zeolites . Nat. Commun. 10 ( 1 ): 5129 . 10.1038/s41467-019-12882-3 PubMedGoogle Scholar Chlubná-Eliášová , P. , Tian , Y. , Pinar , A.B. et al. ( 2014 ). The assembly-disassembly-organization-reassembly mechanism for 3D-2D-3D transformation of germanosilicate IWW zeolite . Angew. Chem. Int. Ed. 53 ( 27 ): 7048 – 7052 . 10.1002/anie.201400600 CASPubMedWeb of Science®Google Scholar Lu , K. , Huang , J. , Jiao , M. et al. ( 2021 ). Topotactic conversion of Ge-rich IWW zeolite into IPC-18 under mild condition . Microporous Mesoporous Mater. 310 : 110617 . 10.1016/j.micromeso.2020.110617 Google Scholar Xu , H. , Jiang , J.-g. , Yang , B. et al. ( 2014 ). Post-synthesis treatment gives highly stable siliceous zeolites through the isomorphous substitution of silicon for germanium in germanosilicates . Angew. Chem. Int. Ed. 53 ( 5 ): 1355 – 1359 . 10.1002/anie.201306527 CASPubMedWeb of Science®Google Scholar Ma , Y. , Xu , H. , Liu , X. et al. ( 2019 ). Structural reconstruction of germanosilicate frameworks by controlled hydrogen reduction . Chem. Commun. 55 ( 13 ): 1883 – 1886 . 10.1039/C8CC09294J PubMedGoogle Scholar Mazur , M. , Arévalo-López Angel , M. , Wheatley , P.S. et al. ( 2018 ). Pressure-induced chemistry for the 2D to 3D transformation of zeolites . J. Mater. Chem. A 6 ( 13 ): 5255 – 5259 . 10.1039/C7TA09248B CASGoogle Scholar Jordá , J.L. , Rey , F. , Sastre , G. et al. ( 2013 ). Synthesis of a novel zeolite through a pressure-induced reconstructive phase transition process . Angew. Chem. Int. Ed. 52 ( 40 ): 10458 – 10462 . 10.1002/anie.201305230 CASPubMedWeb of Science®Google Scholar Amrute , A.P. , De Bellis , J. , Felderhoff , M. , and Schüth , F. ( 2021 ). Mechanochemical synthesis of catalytic materials . Chem. Eur. J. 27 ( 23 ): 6819 – 6847 . 10.1002/chem.202004583 CASPubMedWeb of Science®Google Scholar Szczęśniak , B. , Borysiuk , S. , Choma , J. , and Jaroniec , M. ( 2020 ). Mechanochemical synthesis of highly porous materials . Mater. Horizons 7 ( 6 ): 1457 – 1473 . 10.1039/D0MH00081G CASWeb of Science®Google Scholar Majano , G. , Borchardt , L. , Mitchell , S. et al. ( 2014 ). Rediscovering zeolite mechanochemistry – a pathway beyond current synthesis and modification boundaries . Microporous Mesoporous Mater. 194 : 106 – 114 . 10.1016/j.micromeso.2014.04.006 CASWeb of Science®Google Scholar Rainer , D.N. , Rice , C.M. , Warrender , S.J. et al. ( 2020 ). Mechanochemically assisted hydrolysis in the ADOR process . Chem. Sci. 11 ( 27 ): 7060 – 7069 . 10.1039/D0SC02547J CASPubMedGoogle Scholar Shamzhy , M.V. , Eliášová , P. , Vitvarová , D. et al. ( 2016 ). Post-synthesis stabilization of germanosilicate zeolites ITH, IWW, and UTL by substitution of Ge for Al . Chem. Eur. J. 22 ( 48 ): 17377 – 17386 . 10.1002/chem.201603434 CASPubMedWeb of Science®Google Scholar Shamzhy , M. , Opanasenko , M. , Concepción , P. , and Martínez , A. ( 2019 ). New trends in tailoring active sites in zeolite-based catalysts . Chem. Soc. Rev. 48 : 1095 – 1149 . 10.1039/C8CS00887F CASPubMedWeb of Science®Google Scholar Liu , X. , Xu , H. , Zhang , L. et al. ( 2016 ). Isomorphous incorporation of tin ions into germanosilicate framework assisted by local structural rearrangement . ACS Catal. 6 ( 12 ): 8420 – 8431 . 10.1021/acscatal.6b02032 CASGoogle Scholar Jiao , M. , Zhao , Y. , Jiang , J. et al. ( 2021 ). Extra-large pore titanosilicate synthesized via reversible 3D–2D–3D structural transformation as highly active catalyst for cycloalkene epoxidation . ACS Catal. 11 ( 5 ): 2650 – 2662 . 10.1021/acscatal.0c05144 CASGoogle Scholar Veselý , O. , Mazur , M. , Přech , J. , and Čejka , J. ( 2022 ). Modified Reverse ADOR Assembles Al-Rich UTL Zeolite From IPC-1P Layers . Inorganic Chemistry Frontiers . 10.1039/D2QI01360F Google Scholar Veselý , O. , Eliášová , P. , Morris , R.E. , and Čejka , J. ( 2021 ). Reverse ADOR: reconstruction of UTL zeolite from layered IPC-1P . Mater. Adv. 2 ( 12 ): 3862 – 3870 . 10.1039/D1MA00212K CASPubMedGoogle Scholar Shamzhy , M.V. , Shvets , O.V. , Opanasenko , M.V. et al. ( 2012 ). Synthesis of isomorphously substituted extra-large pore UTL zeolites . J. Mater. Chem. 22 ( 31 ): 15793 – 15803 . 10.1039/c2jm31725g CASGoogle Scholar Shamzhy , M.V. , Ochoa-Hernández , C. , Kasneryk , V.I. et al. ( 2016 ). Direct incorporation of B, Al, and Ga into medium-pore ITH zeolite: synthesis, acidic, and catalytic properties . Catal. Today 277 : 37 – 47 . 10.1016/j.cattod.2015.10.013 CASGoogle Scholar Xu , H. , Jiang , J. , Yang , B. et al. ( 2014 ). Effective Baeyer–Villiger oxidation of ketones over germanosilicates . Catal. Commun. 55 : 83 – 86 . 10.1016/j.catcom.2014.06.019 CASWeb of Science®Google Scholar Kasneryk , V.I. , Shamzhy , M.V. , Opanasenko , M.V. , and Čejka , J. ( 2016 ). Tuning of textural properties of germanosilicate zeolites ITH and IWW by acidic leaching . J. Energy Chem. 25 ( 2 ): 318 – 326 . 10.1016/j.jechem.2015.12.003 Google Scholar Podolean , I. , Zhang , J. , Shamzhy , M. et al. ( 2020 ). Solvent-free ketalization of polyols over germanosilicate zeolites: the role of the nature and strength of acid sites . Cat. Sci. Technol. 10 ( 24 ): 8254 – 8264 . 10.1039/D0CY01662D CASGoogle Scholar Abdi , S. , Kubů , M. , Li , A. et al. ( 2022 ). Addressing confinement effect in alkenes epoxidation using ‘isoreticular’ titanosilicate zeolite catalysts . Catal. Today 390–391 : 326 – 334 . 10.1016/j.cattod.2021.09.027 CASWeb of Science®Google Scholar Csicsery , S.M. ( 1984 ). Shape-selective catalysis in zeolites . Zeolites 4 ( 3 ): 202 – 213 . 10.1016/0144-2449(84)90024-1 CASWeb of Science®Google Scholar Žilková , N. , Eliášová , P. , Al-Khattaf , S. et al. ( 2016 ). The effect of UTL layer connectivity in isoreticular zeolites on the catalytic performance in toluene alkylation . Catal. Today 277 : 55 – 60 . 10.1016/j.cattod.2015.09.033 CASWeb of Science®Google Scholar Remperová , N. , Přech , J. , Kubů , M. et al. ( 2022 ). Gas-phase isomerisation of m-xylene on isoreticular zeolites with tuneable porosity . Catal. Today 390–391 : 78 – 91 . 10.1016/j.cattod.2021.11.044 CASGoogle Scholar Liu , L. , Díaz , U. , Arenal , R. et al. ( 2017 ). Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D . Nat. Mater. 16 ( 1 ): 132 – 138 . 10.1038/nmat4757 CASPubMedWeb of Science®Google Scholar Zhang , Y. , Kubů , M. , Mazur , M. , and Čejka , J. ( 2019 ). Synthesis of Pt-MWW with controllable nanoparticle size . Catal. Today 324 : 135 – 143 . 10.1016/j.cattod.2018.07.015 CASWeb of Science®Google Scholar Molitorisová , S. , Zhang , Y. , Kubů , M. et al. ( 2022 ). 2D-to-3D zeolite transformation for the preparation of Pd@MWW catalysts with tuneable acidity . Catal. Today 390–391 : 109 – 116 . 10.1016/j.cattod.2021.11.041 CASGoogle Scholar Zhang , Y. , Kubů , M. , Mazur , M. , and Čejka , J. ( 2019 ). Encapsulation of Pt nanoparticles into IPC-2 and IPC-4 zeolites using the ADOR approach . Microporous Mesoporous Mater. 279 : 364 – 370 . 10.1016/j.micromeso.2019.01.018 CASWeb of Science®Google Scholar Zhang , Y. , Fulajtárová , K. , Kubů , M. et al. ( 2019 ). Controlling dispersion and accessibility of Pd nanoparticles via 2D-to-3D zeolite transformation for shape-selective catalysis: Pd@MWW case . Mater. Today Nano 8 : 100056 . Google Scholar Micro‐Mesoporous Metallosilicates: Synthesis, Characterization, and Catalytic Applications ReferencesRelatedInformation