ECIFF: Event Causality Identification based on Feature Fusion

计算机科学 人工智能 自然语言处理 事件(粒子物理) 背景(考古学) 语义学(计算机科学) 依赖关系(UML) 自然语言 因果关系(物理学) 特征(语言学) 依赖关系图 鉴定(生物学) 机器学习 图形 理论计算机科学 语言学 古生物学 哲学 物理 量子力学 生物 程序设计语言 植物
作者
Songtao Ding,Yingchi Mao,Yong Cheng,T. Pang,Lijuan Shen,Rongzhi Qi
标识
DOI:10.1109/ictai59109.2023.00101
摘要

Event causality identification is an important task in natural language processing. However, this task is highly challenging due to the high dependency of event context, text semantic ambiguity and insignificant causality features between text events. These issues lead to the low precision of causal relationship identification between events. We propose an Event Causality Identification Based on Feature Fusion (ECIFF) to improve the causality identification precision between events by integrating the context, semantics, and syntax of natural language. Firstly, we utilize BERT to capture the contextual features of events in natural language, enhancing the contextual embedding of events in different contexts. Secondly, based on an adversarial generative graph representation method, ECIFF learns a massive amount of causal relationships in the CauseNet, which can enhance the semantic representation of causes and effects of events. Next, we exploit the shortest dependency path to shorten the length of sentences and inductively learn all possible syntactic dependency relationships. Finally, the contextual, semantic and syntactic features are fused to synthetically determine the causal relationships among events. The experimental results indicate that our proposed approach significantly outperforms the state-of-the-art method LSIN: on the CTBank dataset, the precision, recall and F1-score of our approach are improved by 1.6%, 3.2% and 2.4%; on the ESL dataset, the precision, recall and F1-score of our approach are improved by 4.0%, 4.7% and 4.3%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助布布采纳,获得10
刚刚
1秒前
轩辕德地发布了新的文献求助10
1秒前
nine发布了新的文献求助30
1秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
2秒前
JamesPei应助小敦采纳,获得10
2秒前
今非发布了新的文献求助10
2秒前
李健的小迷弟应助通~采纳,获得30
2秒前
2秒前
2秒前
fanfan44390发布了新的文献求助10
2秒前
Zhang完成签到,获得积分10
3秒前
小二郎应助小田采纳,获得10
4秒前
4秒前
隐形曼青应助liike采纳,获得10
4秒前
phd发布了新的文献求助10
4秒前
4秒前
dingdong发布了新的文献求助30
4秒前
Orange应助清秀的语山采纳,获得50
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
5秒前
无花果应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
5秒前
大李包完成签到,获得积分10
5秒前
思源应助费城青年采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
帮助我的人永远不死完成签到,获得积分20
5秒前
无花果应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
6秒前
LZQ应助科研通管家采纳,获得20
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794