Deep learning-based autonomous vehicle to vehicle detection for smart traffic monitoring in smart cities

计算机科学 深度学习 实时计算 人工智能 航空学 工程类
作者
Mohammad Amir,Ahteshamul Haque,Zaheer-ud Din
出处
期刊:CRC Press eBooks [Informa]
卷期号:: 157-176
标识
DOI:10.1201/9781032669809-7
摘要

Autonomous vehicle identification is one of the emerging applications for vehicle to vehicle (V2V) detection in smart traffic monitors. The prime aim of this chapter is to resolve the existing vehicle identification issues such as lower vehicle detection accuracy, minimum speed detection, and detection of vehicular types. This chapter proposes a deep learning-based approach to extract vehicular type using the YOLOv2 model. In this model, a clustering algorithm (k-means++) employed to group the vehicles within the bounded box with distinct sizes is chosen which is based on the training dataset. Further reducing the losses in length (l) and width (w) of anchor bounding boxes for various 4-wheeled vehicles influence the enhancement in vehicular identification using normalized image data sets. To improve the feature extraction capability of the ImageNet model, the multi-layer feature fusion approach is also being implemented to eliminate the repeated high convolution layers. For mean Average Precision (mAP) estimation, the training of vehicular images data sets using the CompCars and Kaggle vehicular data set is taken from BIT-China. The proposed YOLOv2 model also demonstrates a more superior generalization feature and enhanced extraction capability than the Comp_model. The comparative analysis shows that the proposed model has a better average precision value during V2V detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助baolongzhan采纳,获得10
1秒前
空白格完成签到 ,获得积分10
1秒前
千里发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
浮游应助xiaofu采纳,获得10
2秒前
Lucas应助中午采纳,获得10
2秒前
SD完成签到 ,获得积分10
2秒前
pangpanghu完成签到,获得积分10
2秒前
李科生完成签到,获得积分20
2秒前
jrz完成签到,获得积分10
3秒前
3秒前
4477完成签到,获得积分10
3秒前
韩小寒qqq完成签到,获得积分10
3秒前
我又可以了完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
AN应助sinlar采纳,获得100
5秒前
无极微光应助cong采纳,获得20
5秒前
乌苏苏完成签到,获得积分20
5秒前
李科生发布了新的文献求助10
5秒前
5秒前
5秒前
Lily完成签到,获得积分10
5秒前
打打应助开心的幼珊采纳,获得10
5秒前
小二郎应助棋子采纳,获得10
6秒前
6秒前
6秒前
Tiffy发布了新的文献求助10
6秒前
wwywzw1314发布了新的文献求助10
6秒前
乐乐侠发布了新的文献求助10
6秒前
lijf2024完成签到,获得积分10
6秒前
7秒前
科研通AI6应助冷艳中蓝采纳,获得10
7秒前
7秒前
喵喵发布了新的文献求助10
7秒前
8秒前
Gentleman完成签到,获得积分10
8秒前
NexusExplorer应助aaa北大街采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285