Deep learning-based autonomous vehicle to vehicle detection for smart traffic monitoring in smart cities

计算机科学 深度学习 实时计算 人工智能 航空学 工程类
作者
Mohammad Amir,Ahteshamul Haque,Zaheer-ud Din
出处
期刊:CRC Press eBooks [Informa]
卷期号:: 157-176
标识
DOI:10.1201/9781032669809-7
摘要

Autonomous vehicle identification is one of the emerging applications for vehicle to vehicle (V2V) detection in smart traffic monitors. The prime aim of this chapter is to resolve the existing vehicle identification issues such as lower vehicle detection accuracy, minimum speed detection, and detection of vehicular types. This chapter proposes a deep learning-based approach to extract vehicular type using the YOLOv2 model. In this model, a clustering algorithm (k-means++) employed to group the vehicles within the bounded box with distinct sizes is chosen which is based on the training dataset. Further reducing the losses in length (l) and width (w) of anchor bounding boxes for various 4-wheeled vehicles influence the enhancement in vehicular identification using normalized image data sets. To improve the feature extraction capability of the ImageNet model, the multi-layer feature fusion approach is also being implemented to eliminate the repeated high convolution layers. For mean Average Precision (mAP) estimation, the training of vehicular images data sets using the CompCars and Kaggle vehicular data set is taken from BIT-China. The proposed YOLOv2 model also demonstrates a more superior generalization feature and enhanced extraction capability than the Comp_model. The comparative analysis shows that the proposed model has a better average precision value during V2V detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Walker完成签到,获得积分10
刚刚
华仔应助落寞的采文采纳,获得10
1秒前
青鱼发布了新的文献求助10
1秒前
lignin完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
TIANEO完成签到,获得积分20
2秒前
cytomix完成签到,获得积分10
2秒前
orixero应助年轻的冰淇淋采纳,获得10
2秒前
清新王老吉完成签到,获得积分10
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助30
4秒前
默默海露完成签到,获得积分20
4秒前
Vicky1111完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
BUG完成签到,获得积分10
6秒前
邓施展关注了科研通微信公众号
6秒前
8秒前
Cloud发布了新的文献求助10
8秒前
万能图书馆应助布吉岛采纳,获得10
9秒前
9秒前
迅速翠风关注了科研通微信公众号
10秒前
青鱼发布了新的文献求助10
10秒前
青鱼发布了新的文献求助10
10秒前
青鱼发布了新的文献求助10
10秒前
青鱼发布了新的文献求助10
10秒前
青鱼发布了新的文献求助10
10秒前
简化为完成签到,获得积分10
10秒前
飞翔的鸣发布了新的文献求助10
10秒前
Sea_shark发布了新的文献求助10
11秒前
11秒前
田様应助xiaoman采纳,获得10
12秒前
魔仙堡狸花猫完成签到,获得积分10
12秒前
kkk完成签到,获得积分20
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425