Deep learning-based autonomous vehicle to vehicle detection for smart traffic monitoring in smart cities

计算机科学 深度学习 实时计算 人工智能 航空学 工程类
作者
Mohammad Amir,Ahteshamul Haque,Zaheer-ud Din
出处
期刊:CRC Press eBooks [Informa]
卷期号:: 157-176
标识
DOI:10.1201/9781032669809-7
摘要

Autonomous vehicle identification is one of the emerging applications for vehicle to vehicle (V2V) detection in smart traffic monitors. The prime aim of this chapter is to resolve the existing vehicle identification issues such as lower vehicle detection accuracy, minimum speed detection, and detection of vehicular types. This chapter proposes a deep learning-based approach to extract vehicular type using the YOLOv2 model. In this model, a clustering algorithm (k-means++) employed to group the vehicles within the bounded box with distinct sizes is chosen which is based on the training dataset. Further reducing the losses in length (l) and width (w) of anchor bounding boxes for various 4-wheeled vehicles influence the enhancement in vehicular identification using normalized image data sets. To improve the feature extraction capability of the ImageNet model, the multi-layer feature fusion approach is also being implemented to eliminate the repeated high convolution layers. For mean Average Precision (mAP) estimation, the training of vehicular images data sets using the CompCars and Kaggle vehicular data set is taken from BIT-China. The proposed YOLOv2 model also demonstrates a more superior generalization feature and enhanced extraction capability than the Comp_model. The comparative analysis shows that the proposed model has a better average precision value during V2V detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风清扬发布了新的文献求助10
刚刚
Alexbirchurros完成签到 ,获得积分0
1秒前
1秒前
余海燕发布了新的文献求助10
1秒前
科研混子发布了新的文献求助10
2秒前
2秒前
可爱的函函应助黄宇凡采纳,获得10
3秒前
无敌霸王花应助Blank采纳,获得20
3秒前
葡萄猫发布了新的文献求助10
3秒前
嘀嘀咕咕完成签到,获得积分10
3秒前
C2750完成签到,获得积分10
3秒前
4秒前
Damian发布了新的文献求助10
4秒前
Ava应助热浪午后采纳,获得30
4秒前
yungzhi完成签到,获得积分10
5秒前
完美世界应助linyanmei采纳,获得10
5秒前
zxm完成签到,获得积分10
5秒前
zhx245259630完成签到,获得积分10
5秒前
5秒前
天天快乐应助张112233采纳,获得10
5秒前
Stella发布了新的文献求助10
5秒前
曼波哈基米完成签到,获得积分10
5秒前
元气马完成签到,获得积分10
5秒前
li发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
RY发布了新的文献求助10
8秒前
受伤冰菱完成签到,获得积分10
8秒前
大方凝雁应助孙健采纳,获得10
8秒前
啦啦啦发布了新的文献求助10
8秒前
popcorn完成签到,获得积分10
9秒前
9秒前
核桃发布了新的文献求助30
9秒前
汤一德完成签到,获得积分10
9秒前
yang204完成签到,获得积分10
9秒前
高分求助中
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5238452
求助须知:如何正确求助?哪些是违规求助? 4406131
关于积分的说明 13712854
捐赠科研通 4274562
什么是DOI,文献DOI怎么找? 2345601
邀请新用户注册赠送积分活动 1342629
关于科研通互助平台的介绍 1300627