亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning-based autonomous vehicle to vehicle detection for smart traffic monitoring in smart cities

计算机科学 深度学习 实时计算 人工智能 航空学 工程类
作者
Mohammad Amir,Ahteshamul Haque,Zaheer-ud Din
出处
期刊:CRC Press eBooks [Informa]
卷期号:: 157-176
标识
DOI:10.1201/9781032669809-7
摘要

Autonomous vehicle identification is one of the emerging applications for vehicle to vehicle (V2V) detection in smart traffic monitors. The prime aim of this chapter is to resolve the existing vehicle identification issues such as lower vehicle detection accuracy, minimum speed detection, and detection of vehicular types. This chapter proposes a deep learning-based approach to extract vehicular type using the YOLOv2 model. In this model, a clustering algorithm (k-means++) employed to group the vehicles within the bounded box with distinct sizes is chosen which is based on the training dataset. Further reducing the losses in length (l) and width (w) of anchor bounding boxes for various 4-wheeled vehicles influence the enhancement in vehicular identification using normalized image data sets. To improve the feature extraction capability of the ImageNet model, the multi-layer feature fusion approach is also being implemented to eliminate the repeated high convolution layers. For mean Average Precision (mAP) estimation, the training of vehicular images data sets using the CompCars and Kaggle vehicular data set is taken from BIT-China. The proposed YOLOv2 model also demonstrates a more superior generalization feature and enhanced extraction capability than the Comp_model. The comparative analysis shows that the proposed model has a better average precision value during V2V detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
撒旦asd发布了新的文献求助10
6秒前
以won完成签到,获得积分10
9秒前
安详的从筠完成签到,获得积分10
10秒前
以won发布了新的文献求助10
18秒前
Orange应助摆烂ing采纳,获得10
18秒前
26秒前
30秒前
摆烂ing完成签到,获得积分10
31秒前
Yantuobio完成签到,获得积分10
57秒前
畅快甜瓜发布了新的文献求助10
59秒前
满意的伊完成签到,获得积分10
59秒前
年鱼精完成签到 ,获得积分10
1分钟前
华仔应助读书的时候采纳,获得10
1分钟前
1分钟前
懵懂的莛完成签到,获得积分10
1分钟前
yydd发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Lucas应助huahuahahajiu采纳,获得10
1分钟前
英勇滑板发布了新的文献求助10
1分钟前
1分钟前
香蕉觅云应助自然狗采纳,获得10
1分钟前
yydd完成签到,获得积分20
1分钟前
2分钟前
痞老板死磕蟹黄堡完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
竹修完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
赵芳完成签到,获得积分10
2分钟前
2分钟前
2分钟前
ZXneuro完成签到,获得积分10
2分钟前
yx发布了新的文献求助10
3分钟前
SciGPT应助信陵君无忌采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731901
求助须知:如何正确求助?哪些是违规求助? 5333980
关于积分的说明 15321767
捐赠科研通 4877719
什么是DOI,文献DOI怎么找? 2620550
邀请新用户注册赠送积分活动 1569861
关于科研通互助平台的介绍 1526352