Deep learning-based autonomous vehicle to vehicle detection for smart traffic monitoring in smart cities

计算机科学 深度学习 实时计算 人工智能 航空学 工程类
作者
Mohammad Amir,Ahteshamul Haque,Zaheer-ud Din
出处
期刊:CRC Press eBooks [Informa]
卷期号:: 157-176
标识
DOI:10.1201/9781032669809-7
摘要

Autonomous vehicle identification is one of the emerging applications for vehicle to vehicle (V2V) detection in smart traffic monitors. The prime aim of this chapter is to resolve the existing vehicle identification issues such as lower vehicle detection accuracy, minimum speed detection, and detection of vehicular types. This chapter proposes a deep learning-based approach to extract vehicular type using the YOLOv2 model. In this model, a clustering algorithm (k-means++) employed to group the vehicles within the bounded box with distinct sizes is chosen which is based on the training dataset. Further reducing the losses in length (l) and width (w) of anchor bounding boxes for various 4-wheeled vehicles influence the enhancement in vehicular identification using normalized image data sets. To improve the feature extraction capability of the ImageNet model, the multi-layer feature fusion approach is also being implemented to eliminate the repeated high convolution layers. For mean Average Precision (mAP) estimation, the training of vehicular images data sets using the CompCars and Kaggle vehicular data set is taken from BIT-China. The proposed YOLOv2 model also demonstrates a more superior generalization feature and enhanced extraction capability than the Comp_model. The comparative analysis shows that the proposed model has a better average precision value during V2V detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
世界尽头完成签到,获得积分10
1秒前
1秒前
君与完成签到,获得积分10
1秒前
yili发布了新的文献求助10
1秒前
2秒前
2秒前
科研通AI5应助专注乐巧采纳,获得10
2秒前
自信晟睿发布了新的文献求助10
2秒前
2秒前
3秒前
七里香完成签到 ,获得积分10
3秒前
handsomecat关注了科研通微信公众号
3秒前
细心映寒完成签到 ,获得积分10
3秒前
3秒前
fff完成签到,获得积分10
3秒前
领导范儿应助MJQ采纳,获得100
3秒前
4秒前
Owen应助世界尽头采纳,获得10
4秒前
echolan发布了新的文献求助10
5秒前
SID完成签到,获得积分10
5秒前
中九完成签到 ,获得积分10
5秒前
Rrr完成签到,获得积分10
5秒前
hehuan0520完成签到,获得积分10
5秒前
5秒前
打打应助chinning采纳,获得10
5秒前
桐桐应助wangyanyan采纳,获得10
6秒前
6秒前
zzznznnn发布了新的文献求助10
6秒前
jogrgr发布了新的文献求助10
7秒前
sun发布了新的文献求助10
7秒前
布鲁鲁发布了新的文献求助10
7秒前
自信晟睿完成签到,获得积分10
7秒前
酷波er应助哒哒采纳,获得10
8秒前
8秒前
沉默乐荷完成签到,获得积分10
8秒前
rstorz应助皮尤尤采纳,获得10
8秒前
sweetbearm应助小离采纳,获得10
8秒前
何青岚关注了科研通微信公众号
9秒前
doudou完成签到,获得积分20
9秒前
李健的小迷弟应助潦草采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759