已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

USFM: A Universal Ultrasound Foundation Model Generalized to Tasks and Organs towards Label Efficient Image Analysis

计算机科学 概括性 人工智能 分割 灰度 图像(数学) 机器学习 模式识别(心理学) 心理学 心理治疗师
作者
Jing Jiao,Jin Zhou,Xiaokang Li,Menghua Xia,Yi Huang,Lihong Huang,Na Wang,Xiaofan Zhang,Shichong Zhou,Yuanyuan Wang,Yi Guo
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2401.00153
摘要

Inadequate generality across different organs and tasks constrains the application of ultrasound (US) image analysis methods in smart healthcare. Building a universal US foundation model holds the potential to address these issues. Nevertheless, the development of such foundational models encounters intrinsic challenges in US analysis, i.e., insufficient databases, low quality, and ineffective features. In this paper, we present a universal US foundation model, named USFM, generalized to diverse tasks and organs towards label efficient US image analysis. First, a large-scale Multi-organ, Multi-center, and Multi-device US database was built, comprehensively containing over two million US images. Organ-balanced sampling was employed for unbiased learning. Then, USFM is self-supervised pre-trained on the sufficient US database. To extract the effective features from low-quality US images, we proposed a spatial-frequency dual masked image modeling method. A productive spatial noise addition-recovery approach was designed to learn meaningful US information robustly, while a novel frequency band-stop masking learning approach was also employed to extract complex, implicit grayscale distribution and textural variations. Extensive experiments were conducted on the various tasks of segmentation, classification, and image enhancement from diverse organs and diseases. Comparisons with representative US image analysis models illustrate the universality and effectiveness of USFM. The label efficiency experiments suggest the USFM obtains robust performance with only 20% annotation, laying the groundwork for the rapid development of US models in clinical practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任全强发布了新的文献求助10
1秒前
温暖白容发布了新的文献求助10
1秒前
2秒前
燕子完成签到 ,获得积分10
3秒前
ZHANG完成签到,获得积分10
3秒前
英姑应助qqq采纳,获得10
4秒前
打打应助任全强采纳,获得10
4秒前
笨笨善若发布了新的文献求助10
9秒前
12秒前
12秒前
12秒前
wanglei完成签到,获得积分10
13秒前
14秒前
16秒前
16秒前
丘比特应助Yuan采纳,获得10
17秒前
晓筠发布了新的文献求助10
17秒前
Shan完成签到,获得积分10
18秒前
18秒前
Juno完成签到,获得积分10
20秒前
英姑应助CHAIZH采纳,获得10
20秒前
科目三应助鳗鱼绿蝶采纳,获得10
22秒前
23秒前
深情安青应助yongjie采纳,获得10
23秒前
shengchang88发布了新的文献求助30
24秒前
24秒前
科目三应助Shan采纳,获得10
25秒前
25秒前
29秒前
30秒前
31秒前
31秒前
李健的粉丝团团长应助qiu采纳,获得10
31秒前
科研通AI5应助OuO采纳,获得10
33秒前
gluwater完成签到,获得积分20
33秒前
鳗鱼绿蝶发布了新的文献求助10
34秒前
小马甲应助shengchang88采纳,获得10
34秒前
精明松思发布了新的文献求助10
35秒前
Yuan发布了新的文献求助10
36秒前
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968009
求助须知:如何正确求助?哪些是违规求助? 3513050
关于积分的说明 11166132
捐赠科研通 3248187
什么是DOI,文献DOI怎么找? 1794124
邀请新用户注册赠送积分活动 874880
科研通“疑难数据库(出版商)”最低求助积分说明 804610