USFM: A Universal Ultrasound Foundation Model Generalized to Tasks and Organs towards Label Efficient Image Analysis

计算机科学 概括性 人工智能 分割 灰度 图像(数学) 机器学习 模式识别(心理学) 心理学 心理治疗师
作者
Jing Jiao,Jin Zhou,Xiaokang Li,Menghua Xia,Yi Huang,Lihong Huang,Na Wang,Xiaofan Zhang,Shichong Zhou,Yuanyuan Wang,Yi Guo
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2401.00153
摘要

Inadequate generality across different organs and tasks constrains the application of ultrasound (US) image analysis methods in smart healthcare. Building a universal US foundation model holds the potential to address these issues. Nevertheless, the development of such foundational models encounters intrinsic challenges in US analysis, i.e., insufficient databases, low quality, and ineffective features. In this paper, we present a universal US foundation model, named USFM, generalized to diverse tasks and organs towards label efficient US image analysis. First, a large-scale Multi-organ, Multi-center, and Multi-device US database was built, comprehensively containing over two million US images. Organ-balanced sampling was employed for unbiased learning. Then, USFM is self-supervised pre-trained on the sufficient US database. To extract the effective features from low-quality US images, we proposed a spatial-frequency dual masked image modeling method. A productive spatial noise addition-recovery approach was designed to learn meaningful US information robustly, while a novel frequency band-stop masking learning approach was also employed to extract complex, implicit grayscale distribution and textural variations. Extensive experiments were conducted on the various tasks of segmentation, classification, and image enhancement from diverse organs and diseases. Comparisons with representative US image analysis models illustrate the universality and effectiveness of USFM. The label efficiency experiments suggest the USFM obtains robust performance with only 20% annotation, laying the groundwork for the rapid development of US models in clinical practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
5秒前
TianFuAI完成签到,获得积分10
5秒前
9秒前
12秒前
12秒前
12秒前
12秒前
12秒前
2316051459完成签到,获得积分20
12秒前
Frank应助科研通管家采纳,获得10
12秒前
12秒前
scott_zip完成签到 ,获得积分10
12秒前
Frank应助科研通管家采纳,获得10
12秒前
12秒前
Frank应助科研通管家采纳,获得10
12秒前
12秒前
Frank应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
Frank应助科研通管家采纳,获得10
13秒前
Frank应助科研通管家采纳,获得10
13秒前
13秒前
Frank应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
Frank应助科研通管家采纳,获得10
13秒前
13秒前
隐形白开水完成签到,获得积分0
13秒前
14秒前
Glen7完成签到,获得积分20
16秒前
keyan完成签到,获得积分10
16秒前
17秒前
18秒前
量子星尘发布了新的文献求助50
22秒前
Woo_SH发布了新的文献求助30
22秒前
fossil完成签到,获得积分10
22秒前
糊里糊涂完成签到 ,获得积分10
23秒前
思源应助紫气东来采纳,获得50
25秒前
holly完成签到,获得积分10
27秒前
端庄洪纲完成签到 ,获得积分10
28秒前
MUAN完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5796260
求助须知:如何正确求助?哪些是违规求助? 5774766
关于积分的说明 15491565
捐赠科研通 4923283
什么是DOI,文献DOI怎么找? 2650279
邀请新用户注册赠送积分活动 1597517
关于科研通互助平台的介绍 1552119