USFM: A Universal Ultrasound Foundation Model Generalized to Tasks and Organs towards Label Efficient Image Analysis

计算机科学 概括性 人工智能 分割 灰度 图像(数学) 机器学习 模式识别(心理学) 心理学 心理治疗师
作者
Jing Jiao,Jin Zhou,Xiaokang Li,Menghua Xia,Yi Huang,Lihong Huang,Na Wang,Xiaofan Zhang,Shichong Zhou,Yuanyuan Wang,Yi Guo
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2401.00153
摘要

Inadequate generality across different organs and tasks constrains the application of ultrasound (US) image analysis methods in smart healthcare. Building a universal US foundation model holds the potential to address these issues. Nevertheless, the development of such foundational models encounters intrinsic challenges in US analysis, i.e., insufficient databases, low quality, and ineffective features. In this paper, we present a universal US foundation model, named USFM, generalized to diverse tasks and organs towards label efficient US image analysis. First, a large-scale Multi-organ, Multi-center, and Multi-device US database was built, comprehensively containing over two million US images. Organ-balanced sampling was employed for unbiased learning. Then, USFM is self-supervised pre-trained on the sufficient US database. To extract the effective features from low-quality US images, we proposed a spatial-frequency dual masked image modeling method. A productive spatial noise addition-recovery approach was designed to learn meaningful US information robustly, while a novel frequency band-stop masking learning approach was also employed to extract complex, implicit grayscale distribution and textural variations. Extensive experiments were conducted on the various tasks of segmentation, classification, and image enhancement from diverse organs and diseases. Comparisons with representative US image analysis models illustrate the universality and effectiveness of USFM. The label efficiency experiments suggest the USFM obtains robust performance with only 20% annotation, laying the groundwork for the rapid development of US models in clinical practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
完美世界应助幸福胡萝卜采纳,获得10
1秒前
通~发布了新的文献求助10
1秒前
2秒前
科目三应助Arnold采纳,获得10
2秒前
润润轩轩发布了新的文献求助10
3秒前
宗笑晴发布了新的文献求助10
3秒前
lucky完成签到,获得积分10
3秒前
糖糖发布了新的文献求助10
4秒前
4秒前
跳跃尔容完成签到,获得积分10
5秒前
wyblobin完成签到,获得积分10
5秒前
5秒前
6秒前
沉默沛岚完成签到,获得积分10
6秒前
丰知然应助宇文宛菡采纳,获得10
6秒前
所所应助tu采纳,获得30
7秒前
mechefy完成签到,获得积分10
7秒前
鲤鱼萧完成签到,获得积分10
8秒前
宗笑晴完成签到,获得积分10
8秒前
9秒前
小蘑菇应助头发乱了采纳,获得10
9秒前
代萌萌发布了新的文献求助10
10秒前
jucy发布了新的文献求助50
10秒前
10秒前
Lz完成签到,获得积分10
10秒前
Hello应助葛辉辉采纳,获得10
10秒前
秦嘉旎完成签到,获得积分10
11秒前
华仔应助通~采纳,获得10
11秒前
万能图书馆应助半颗橙子采纳,获得10
11秒前
樱铃完成签到,获得积分10
12秒前
12秒前
上官若男应助俭朴的明轩采纳,获得10
12秒前
1199发布了新的文献求助10
13秒前
英姑应助包容的过客采纳,获得10
14秒前
标致的战斗机完成签到,获得积分10
14秒前
科研人发布了新的文献求助10
15秒前
hl完成签到,获得积分10
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762