已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning-based prediction of abdominal aortic aneurysms for individualized patient care

医学 腹主动脉瘤 放射科 重症监护医学 心脏病学 动脉瘤
作者
Kelli L. Summers,Edmund Kenneth Kerut,Filip To,Claudie Sheahan,Malachi Sheahan
出处
期刊:Journal of Vascular Surgery [Elsevier BV]
卷期号:79 (5): 1057-1067.e2 被引量:8
标识
DOI:10.1016/j.jvs.2023.12.046
摘要

OBJECTIVE The United States Preventative Services Task Force (USPSTF) guidelines for screening for abdominal aortic aneurysms (AAA) are broad and exclude many at risk groups. We analyzed a large AAA screening database to examine the utility of a novel machine learning (ML) model for predicting individual risk of AAA. METHODS We created a ML model to predict the presence of AAAs (>3cm) from the database of a national non-profit screening organization (AAAneurysm Outreach). Participants self-reported demographics and co-morbidities. The model is a two-layered feed-forward shallow network. The ML model then generated AAA probability based on patient characteristics. We evaluated graphs to determine significant factors, and then compared those graphs to a traditional logistic regression model. RESULTS We analyzed a patient cohort of 10,033 subjects with an AAA prevalence of 2.74%. Consistent with logistic regression analysis, the ML model identified the following predictors of AAA: Caucasian race, male gender, increasing age, and recent or past smoker with recent smoker having a more profound affect (P < .05). Interestingly, the ML model showed BMI was associated with likelihood of AAAs, especially for younger females. The ML model also identified a higher than predicted risk of AAA in several groups including female non-smokers with cardiac disease, female diabetics, those with a family history of AAA, and those with hypertension or hyperlipidemia at older ages. An elevated BMI conveyed a higher than expected risk in male smokers and all females. The ML model also identified a complex relationship of both diabetes mellitus and hyperlipidemia with gender. Family history of AAA was a more important risk factor in the ML model for both men and women too. CONCLUSIONS We successfully developed an ML model based on an AAA screening database that unveils a complex relationship between AAA prevalence and many risk factors, including BMI. The model also highlights the need to expand AAA screening efforts in women. Using ML models in the clinical setting has the potential to deliver precise, individualized screening recommendations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gds关闭了gds文献求助
1秒前
长情醉柳完成签到 ,获得积分10
4秒前
乐乐应助如意怀柔采纳,获得10
4秒前
5秒前
太阳完成签到,获得积分10
6秒前
7秒前
阿伟1999发布了新的文献求助10
7秒前
10秒前
希希完成签到 ,获得积分10
11秒前
11秒前
牟牟发布了新的文献求助10
11秒前
12秒前
lyn发布了新的文献求助10
12秒前
隐形曼青应助wang_oms采纳,获得10
12秒前
instanc通发布了新的文献求助10
13秒前
wayne完成签到,获得积分10
14秒前
阿波罗完成签到,获得积分10
18秒前
asplD完成签到,获得积分10
18秒前
18秒前
19秒前
汉堡包应助agnes采纳,获得10
24秒前
霖宸羽发布了新的文献求助10
24秒前
26秒前
28秒前
29秒前
33秒前
牟牟完成签到,获得积分20
33秒前
天之道发布了新的文献求助20
33秒前
wangrblzu应助简单毛衣采纳,获得10
38秒前
40秒前
40秒前
等你下课完成签到 ,获得积分10
43秒前
Ranr完成签到,获得积分10
44秒前
45秒前
46秒前
Akim应助微笑傥采纳,获得10
47秒前
48秒前
科研通AI5应助天之道采纳,获得10
49秒前
芒果完成签到,获得积分10
50秒前
英俊的铭应助一个正经人采纳,获得10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3766902
求助须知:如何正确求助?哪些是违规求助? 3311339
关于积分的说明 10158179
捐赠科研通 3026407
什么是DOI,文献DOI怎么找? 1661172
邀请新用户注册赠送积分活动 793895
科研通“疑难数据库(出版商)”最低求助积分说明 755846