UAV T-YOLO-Rice: An Enhanced Tiny Yolo Networks for Rice Leaves Diseases Detection in Paddy Agronomy

深度学习 水稻 计算机科学 联营 块(置换群论) 棱锥(几何) 农业工程 人工智能 农学 数学 工程类 生物 几何学
作者
Arun Kumar Sangaiah,Fan-Nong Yu,Yi‐Bing Lin,Wan-Chi Shen,Akashdeep Sharma
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16 被引量:5
标识
DOI:10.1109/tnse.2024.3350640
摘要

The paddy agronomy in the Asia-pacific region has gained a prominent role in connection with the major rice production area in over the decades. The research aims to investigate the aerial computing techniques to improve the sky farming techniques. Recently, the enhancement of unmanned aerial vehicle (UAV) and Internet of Things (IoT) with Deep Learning (DL) in paddy agronomy research has ensured the impact on data availability and predictive analytics. In this research, we focus on Deep Learning (DL) for identifying weeds, regions of crop failure, and crop health in paddy crops. Therefore, a DL architecture suitable for application in aerial computing UAV onboard intelligence is necessary. Furthermore, the DL architecture should be stable and consume as few computational resources as possible, given that it is applied on the UAV's onboard system. This paper proposes to use Tiny YOLO (T-Yolo)V4 as the base detector via following modules: (a) YOLO detection layer is added to the T-YOLO v4 to make the network more capable of detecting small objects. (b) Spatial pyramid pooling (SPP), convolutional block attention module (CBAM), Sand Clock Feature Extraction Module (SCFEM), Ghost modules, and more convolutional layers are added to the network to increase the accuracy of the network. Subsequently, a rice leaf diseases data set which contains the labeled images of rice leaf diseases such as Bacterial leaf blight, Rice blast, and brown spot is obtained. In addition, the image augmentations is applied to produce more samples of the three classes to create our own rice leaf diseases data set. Finally, the enhanced UAV Tiny Yolo Rice (UAV T-yolo-Rice) network has obtained the testing mean average precision (mAP) as $86 \%$ by training the proposed rice leaves' disease data set. More experimental results reveal that our proposed method outperforms the Rice Leaves' Diseases detection model by using the proposed UAV T-yolo-Rice network set can obtain the highest testing Mean Average Precision (mAP) than all the other models from previous studies. Even the Yolo V7 model produced by darknet cannot have the testing accuracy that is higher than the proposed network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云唯发布了新的文献求助10
1秒前
1秒前
1秒前
研友_VZG7GZ应助zly采纳,获得10
1秒前
1秒前
舒适的鱼鱼完成签到,获得积分10
3秒前
hs完成签到,获得积分10
5秒前
兔毛毛发布了新的文献求助10
5秒前
慕青应助李蹦跶采纳,获得10
7秒前
林守心发布了新的文献求助10
7秒前
8秒前
zly完成签到,获得积分20
8秒前
苹果行天完成签到,获得积分20
9秒前
10秒前
10秒前
Ava应助tgd采纳,获得10
10秒前
Chm完成签到,获得积分10
10秒前
SC完成签到 ,获得积分10
11秒前
yulong发布了新的文献求助10
14秒前
14秒前
乐乐应助兔毛毛采纳,获得10
15秒前
Z01完成签到,获得积分10
15秒前
辰小呀完成签到,获得积分10
15秒前
15秒前
17秒前
17秒前
18秒前
19秒前
nsc发布了新的文献求助10
23秒前
HUS发布了新的文献求助10
24秒前
aaa关注了科研通微信公众号
25秒前
asd发布了新的文献求助10
25秒前
汉堡包应助ZHANGMANLI0422采纳,获得10
27秒前
chahun完成签到 ,获得积分20
27秒前
27秒前
伟钧完成签到,获得积分10
28秒前
29秒前
科研通AI2S应助lishunzcqty采纳,获得10
30秒前
万雨斌完成签到,获得积分10
30秒前
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3443733
求助须知:如何正确求助?哪些是违规求助? 3039898
关于积分的说明 8978605
捐赠科研通 2728387
什么是DOI,文献DOI怎么找? 1496507
科研通“疑难数据库(出版商)”最低求助积分说明 691668
邀请新用户注册赠送积分活动 689213