UAV T-YOLO-Rice: An Enhanced Tiny Yolo Networks for Rice Leaves Diseases Detection in Paddy Agronomy

深度学习 水稻 计算机科学 联营 块(置换群论) 棱锥(几何) 农业工程 人工智能 农学 数学 工程类 生物 几何学
作者
Arun Kumar Sangaiah,Fan-Nong Yu,Yi‐Bing Lin,Wan-Chi Shen,Akashdeep Sharma
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:11 (6): 5201-5216 被引量:12
标识
DOI:10.1109/tnse.2024.3350640
摘要

The paddy agronomy in the Asia-pacific region has gained a prominent role in connection with the major rice production area in over the decades. The research aims to investigate the aerial computing techniques to improve the sky farming techniques. Recently, the enhancement of unmanned aerial vehicle (UAV) and Internet of Things (IoT) with Deep Learning (DL) in paddy agronomy research has ensured the impact on data availability and predictive analytics. In this research, we focus on Deep Learning (DL) for identifying weeds, regions of crop failure, and crop health in paddy crops. Therefore, a DL architecture suitable for application in aerial computing UAV onboard intelligence is necessary. Furthermore, the DL architecture should be stable and consume as few computational resources as possible, given that it is applied on the UAV's onboard system. This paper proposes to use Tiny YOLO (T-Yolo)V4 as the base detector via following modules: (a) YOLO detection layer is added to the T-YOLO v4 to make the network more capable of detecting small objects. (b) Spatial pyramid pooling (SPP), convolutional block attention module (CBAM), Sand Clock Feature Extraction Module (SCFEM), Ghost modules, and more convolutional layers are added to the network to increase the accuracy of the network. Subsequently, a rice leaf diseases data set which contains the labeled images of rice leaf diseases such as Bacterial leaf blight, Rice blast, and brown spot is obtained. In addition, the image augmentations is applied to produce more samples of the three classes to create our own rice leaf diseases data set. Finally, the enhanced UAV Tiny Yolo Rice (UAV T-yolo-Rice) network has obtained the testing mean average precision (mAP) as $86 \%$ by training the proposed rice leaves' disease data set. More experimental results reveal that our proposed method outperforms the Rice Leaves' Diseases detection model by using the proposed UAV T-yolo-Rice network set can obtain the highest testing Mean Average Precision (mAP) than all the other models from previous studies. Even the Yolo V7 model produced by darknet cannot have the testing accuracy that is higher than the proposed network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
薛乎虚完成签到 ,获得积分10
1秒前
哎呀妈呀发布了新的文献求助10
1秒前
无语的怜梦完成签到,获得积分10
1秒前
kzz312发布了新的文献求助10
1秒前
杳鸢应助yi采纳,获得200
2秒前
甜蜜傲晴完成签到,获得积分10
2秒前
zycorner完成签到,获得积分10
2秒前
2秒前
荀代灵完成签到,获得积分10
3秒前
4秒前
愉快白亦完成签到,获得积分10
4秒前
4秒前
echo完成签到 ,获得积分10
5秒前
5秒前
美好焦完成签到,获得积分10
5秒前
麦子完成签到 ,获得积分10
5秒前
LC完成签到 ,获得积分10
6秒前
6秒前
难过的初柔应助paopao采纳,获得10
7秒前
zxcvb发布了新的文献求助30
7秒前
星辰大海应助tesla采纳,获得10
8秒前
madison发布了新的文献求助10
8秒前
zoey完成签到,获得积分10
8秒前
黄嘟嘟完成签到,获得积分10
8秒前
NICKPLZ完成签到,获得积分10
8秒前
小鬼完成签到,获得积分10
9秒前
WANGGE完成签到 ,获得积分10
9秒前
小巧凝丹完成签到,获得积分10
11秒前
11秒前
funny发布了新的文献求助10
12秒前
12秒前
大模型应助芝士就是力量采纳,获得10
13秒前
田様应助小闲鱼采纳,获得10
13秒前
活泼凌青完成签到,获得积分10
13秒前
小糊涂仙完成签到,获得积分10
13秒前
科研通AI5应助王悦采纳,获得10
14秒前
杨青月完成签到,获得积分10
14秒前
上官若男应助yuncong323采纳,获得10
14秒前
dandan完成签到,获得积分10
15秒前
风趣的天问完成签到 ,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556011
求助须知:如何正确求助?哪些是违规求助? 3131566
关于积分的说明 9392042
捐赠科研通 2831431
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715910