已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Semantic Communications for Image Recovery and Classification via Deep Joint Source and Channel Coding

计算机科学 接头(建筑物) 人工智能 编码(社会科学) 信道编码 无线 解码方法 模式识别(心理学) 语音识别 电信 计算机视觉 数学 统计 建筑工程 工程类
作者
Zhonghao Lyu,Guangxu Zhu,Jie Xu,Bo Ai,Shuguang Cui
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:23 (8): 8388-8404 被引量:10
标识
DOI:10.1109/twc.2023.3349330
摘要

With the recent advancements in edge artificial intelligence (AI), future sixth-generation (6G) networks need to support new AI tasks such as classification and clustering apart from data recovery. Motivated by the success of deep learning, the semantic-aware and task-oriented communications with deep joint source and channel coding (JSCC) have emerged as new paradigm shifts in 6G from the conventional data-oriented communications with separate source and channel coding (SSCC). However, most existing works focused on the deep JSCC designs for one task of data recovery or AI task execution independently, which cannot be transferred to other unintended tasks. Differently, this paper investigates the JSCC semantic communications to support multi-task services, by performing the image data recovery and classification task execution simultaneously. First, we propose a new end-to-end deep JSCC framework by unifying the coding rate reduction maximization and the mean square error (MSE) minimization in the loss function. Here, the coding rate reduction maximization facilitates the learning of discriminative features for enabling to perform classification tasks directly in the feature space, and the MSE minimization helps the learning of informative features for high-quality image data recovery. Next, to further improve the robustness against variational wireless channels, we propose a new gated deep JSCC design, in which a gated net is incorporated for adaptively pruning the output features to adjust their dimensions based on channel conditions. Finally, we present extensive numerical experiments to validate the performance of our proposed deep JSCC designs as compared to various benchmark schemes. It is shown that our proposed designs simultaneously provide efficient multi-task services, and the proposed gated deep JSCC framework efficiently reduces the communication overhead with only marginal performance loss. It is also shown that performing the classification task on the feature space via coding rate reduction maximization is able to better defend the label corruption than the traditional label-fitting methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yanglinhai完成签到 ,获得积分10
1秒前
domingo完成签到,获得积分10
2秒前
左一酱完成签到 ,获得积分10
2秒前
HXL发布了新的文献求助10
4秒前
呉冥11应助piko11采纳,获得10
5秒前
Nakacoke77完成签到,获得积分10
8秒前
坐下喝茶完成签到 ,获得积分10
10秒前
12秒前
hh完成签到 ,获得积分10
12秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
17秒前
jixuzhuixun发布了新的文献求助10
18秒前
19秒前
23秒前
tjnksy完成签到,获得积分10
27秒前
朱大头完成签到,获得积分10
27秒前
28秒前
zy95282发布了新的文献求助30
29秒前
宇宇完成签到 ,获得积分10
31秒前
乐乐应助典雅的诗兰采纳,获得30
31秒前
英姑应助吕不韦采纳,获得10
32秒前
千帆完成签到,获得积分10
33秒前
汉堡包应助zy95282采纳,获得30
35秒前
小席要进步完成签到 ,获得积分10
36秒前
迅速的易巧完成签到 ,获得积分10
39秒前
HXL完成签到,获得积分10
41秒前
41秒前
Ztx完成签到,获得积分10
42秒前
1434683426完成签到 ,获得积分10
43秒前
吕不韦发布了新的文献求助10
45秒前
淡水鱼完成签到 ,获得积分10
48秒前
dyuephy完成签到,获得积分10
51秒前
情怀应助嘴巴张大一点采纳,获得10
57秒前
打打应助lenon采纳,获得10
57秒前
Charlie完成签到 ,获得积分10
57秒前
59秒前
lixiang发布了新的文献求助10
1分钟前
1分钟前
1分钟前
小鱼儿完成签到,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994866
求助须知:如何正确求助?哪些是违规求助? 3534988
关于积分的说明 11266966
捐赠科研通 3274824
什么是DOI,文献DOI怎么找? 1806467
邀请新用户注册赠送积分活动 883316
科研通“疑难数据库(出版商)”最低求助积分说明 809762