Semantic Communications for Image Recovery and Classification via Deep Joint Source and Channel Coding

计算机科学 接头(建筑物) 人工智能 编码(社会科学) 信道编码 无线 解码方法 模式识别(心理学) 语音识别 电信 计算机视觉 数学 统计 工程类 建筑工程
作者
Zhonghao Lyu,Guangxu Zhu,Jie Xu,Bo Ai,Shuguang Cui
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:23 (8): 8388-8404 被引量:10
标识
DOI:10.1109/twc.2023.3349330
摘要

With the recent advancements in edge artificial intelligence (AI), future sixth-generation (6G) networks need to support new AI tasks such as classification and clustering apart from data recovery. Motivated by the success of deep learning, the semantic-aware and task-oriented communications with deep joint source and channel coding (JSCC) have emerged as new paradigm shifts in 6G from the conventional data-oriented communications with separate source and channel coding (SSCC). However, most existing works focused on the deep JSCC designs for one task of data recovery or AI task execution independently, which cannot be transferred to other unintended tasks. Differently, this paper investigates the JSCC semantic communications to support multi-task services, by performing the image data recovery and classification task execution simultaneously. First, we propose a new end-to-end deep JSCC framework by unifying the coding rate reduction maximization and the mean square error (MSE) minimization in the loss function. Here, the coding rate reduction maximization facilitates the learning of discriminative features for enabling to perform classification tasks directly in the feature space, and the MSE minimization helps the learning of informative features for high-quality image data recovery. Next, to further improve the robustness against variational wireless channels, we propose a new gated deep JSCC design, in which a gated net is incorporated for adaptively pruning the output features to adjust their dimensions based on channel conditions. Finally, we present extensive numerical experiments to validate the performance of our proposed deep JSCC designs as compared to various benchmark schemes. It is shown that our proposed designs simultaneously provide efficient multi-task services, and the proposed gated deep JSCC framework efficiently reduces the communication overhead with only marginal performance loss. It is also shown that performing the classification task on the feature space via coding rate reduction maximization is able to better defend the label corruption than the traditional label-fitting methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
英俊的铭应助ekdjk采纳,获得10
1秒前
谨慎乌完成签到,获得积分10
1秒前
Sun_Chen发布了新的文献求助10
1秒前
稳过儿完成签到,获得积分10
3秒前
HHZ关闭了HHZ文献求助
4秒前
隐形曼青应助hlc采纳,获得10
4秒前
小团子发布了新的文献求助10
4秒前
HOPE完成签到,获得积分20
5秒前
5秒前
6秒前
6秒前
科研通AI6应助猫尔儿采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
su发布了新的文献求助10
8秒前
NexusExplorer应助123采纳,获得10
9秒前
shuyingRen发布了新的文献求助10
9秒前
huangtao完成签到,获得积分20
9秒前
冷艳招牌发布了新的文献求助10
10秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
zyro完成签到,获得积分10
11秒前
轨迹应助加减乘除采纳,获得10
12秒前
犹豫的行恶应助zzz采纳,获得10
12秒前
13秒前
Rao完成签到 ,获得积分10
13秒前
14秒前
打打应助今天没有哭鸭采纳,获得10
15秒前
Jared应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
实验一定顺完成签到,获得积分10
15秒前
15秒前
16秒前
匿名应助科研通管家采纳,获得10
16秒前
16秒前
Ava应助科研通管家采纳,获得10
16秒前
zhonglv7应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666560
求助须知:如何正确求助?哪些是违规求助? 4882496
关于积分的说明 15117625
捐赠科研通 4825585
什么是DOI,文献DOI怎么找? 2583523
邀请新用户注册赠送积分活动 1537653
关于科研通互助平台的介绍 1495895