Semantic Communications for Image Recovery and Classification via Deep Joint Source and Channel Coding

计算机科学 接头(建筑物) 人工智能 编码(社会科学) 信道编码 无线 解码方法 模式识别(心理学) 语音识别 电信 计算机视觉 数学 统计 工程类 建筑工程
作者
Zhonghao Lyu,Guangxu Zhu,Jie Xu,Bo Ai,Shuguang Cui
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:23 (8): 8388-8404 被引量:10
标识
DOI:10.1109/twc.2023.3349330
摘要

With the recent advancements in edge artificial intelligence (AI), future sixth-generation (6G) networks need to support new AI tasks such as classification and clustering apart from data recovery. Motivated by the success of deep learning, the semantic-aware and task-oriented communications with deep joint source and channel coding (JSCC) have emerged as new paradigm shifts in 6G from the conventional data-oriented communications with separate source and channel coding (SSCC). However, most existing works focused on the deep JSCC designs for one task of data recovery or AI task execution independently, which cannot be transferred to other unintended tasks. Differently, this paper investigates the JSCC semantic communications to support multi-task services, by performing the image data recovery and classification task execution simultaneously. First, we propose a new end-to-end deep JSCC framework by unifying the coding rate reduction maximization and the mean square error (MSE) minimization in the loss function. Here, the coding rate reduction maximization facilitates the learning of discriminative features for enabling to perform classification tasks directly in the feature space, and the MSE minimization helps the learning of informative features for high-quality image data recovery. Next, to further improve the robustness against variational wireless channels, we propose a new gated deep JSCC design, in which a gated net is incorporated for adaptively pruning the output features to adjust their dimensions based on channel conditions. Finally, we present extensive numerical experiments to validate the performance of our proposed deep JSCC designs as compared to various benchmark schemes. It is shown that our proposed designs simultaneously provide efficient multi-task services, and the proposed gated deep JSCC framework efficiently reduces the communication overhead with only marginal performance loss. It is also shown that performing the classification task on the feature space via coding rate reduction maximization is able to better defend the label corruption than the traditional label-fitting methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啵啵龙发布了新的文献求助10
2秒前
沉默棉花糖完成签到,获得积分10
3秒前
鹏程应助拼搏君浩采纳,获得10
4秒前
5秒前
老马哥完成签到 ,获得积分0
5秒前
明月念斯人完成签到 ,获得积分10
7秒前
7秒前
淡然冬灵应助锅铲采纳,获得20
8秒前
Rabbit完成签到 ,获得积分10
10秒前
10秒前
现代书雪发布了新的文献求助10
11秒前
宁霸完成签到,获得积分0
12秒前
deniroming完成签到,获得积分0
16秒前
Jasper应助ZR666888采纳,获得10
17秒前
一行完成签到,获得积分10
17秒前
壮观小懒虫完成签到 ,获得积分10
18秒前
勤恳洙应助现代书雪采纳,获得30
22秒前
28秒前
嘿嘿应助科研通管家采纳,获得10
28秒前
在水一方应助科研通管家采纳,获得10
28秒前
桐桐应助刘慧鑫采纳,获得10
28秒前
NexusExplorer应助科研通管家采纳,获得10
28秒前
28秒前
充电宝应助科研通管家采纳,获得10
28秒前
斯文败类应助科研通管家采纳,获得10
28秒前
bkagyin应助科研通管家采纳,获得10
28秒前
29秒前
现代书雪完成签到,获得积分20
31秒前
32秒前
跳跃小伙完成签到 ,获得积分10
33秒前
33秒前
123345发布了新的文献求助10
34秒前
35秒前
zyyao发布了新的文献求助20
35秒前
流光发布了新的文献求助10
37秒前
Owen应助2022H采纳,获得20
37秒前
zxer发布了新的文献求助10
38秒前
乐观荣轩完成签到,获得积分10
40秒前
刘慧鑫发布了新的文献求助10
41秒前
香蕉觅云应助讨厌乐跑采纳,获得10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Using a Non-Equivalent Control Group Design in Educational Research 200
Public Health, Personal Health and Pills: Drug Entanglements and Pharmaceuticalised Governance 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5868245
求助须知:如何正确求助?哪些是违规求助? 6439836
关于积分的说明 15658050
捐赠科研通 4983670
什么是DOI,文献DOI怎么找? 2687581
邀请新用户注册赠送积分活动 1630242
关于科研通互助平台的介绍 1588346