Semantic Communications for Image Recovery and Classification via Deep Joint Source and Channel Coding

计算机科学 接头(建筑物) 人工智能 编码(社会科学) 信道编码 无线 解码方法 模式识别(心理学) 语音识别 电信 计算机视觉 数学 统计 建筑工程 工程类
作者
Zhonghao Lyu,Guangxu Zhu,Jie Xu,Bo Ai,Shuguang Cui
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:23 (8): 8388-8404 被引量:10
标识
DOI:10.1109/twc.2023.3349330
摘要

With the recent advancements in edge artificial intelligence (AI), future sixth-generation (6G) networks need to support new AI tasks such as classification and clustering apart from data recovery. Motivated by the success of deep learning, the semantic-aware and task-oriented communications with deep joint source and channel coding (JSCC) have emerged as new paradigm shifts in 6G from the conventional data-oriented communications with separate source and channel coding (SSCC). However, most existing works focused on the deep JSCC designs for one task of data recovery or AI task execution independently, which cannot be transferred to other unintended tasks. Differently, this paper investigates the JSCC semantic communications to support multi-task services, by performing the image data recovery and classification task execution simultaneously. First, we propose a new end-to-end deep JSCC framework by unifying the coding rate reduction maximization and the mean square error (MSE) minimization in the loss function. Here, the coding rate reduction maximization facilitates the learning of discriminative features for enabling to perform classification tasks directly in the feature space, and the MSE minimization helps the learning of informative features for high-quality image data recovery. Next, to further improve the robustness against variational wireless channels, we propose a new gated deep JSCC design, in which a gated net is incorporated for adaptively pruning the output features to adjust their dimensions based on channel conditions. Finally, we present extensive numerical experiments to validate the performance of our proposed deep JSCC designs as compared to various benchmark schemes. It is shown that our proposed designs simultaneously provide efficient multi-task services, and the proposed gated deep JSCC framework efficiently reduces the communication overhead with only marginal performance loss. It is also shown that performing the classification task on the feature space via coding rate reduction maximization is able to better defend the label corruption than the traditional label-fitting methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
xybc发布了新的文献求助10
1秒前
甘特发布了新的文献求助10
1秒前
奋斗的小彭完成签到,获得积分10
2秒前
纯真大象发布了新的文献求助10
2秒前
白日梦完成签到,获得积分20
2秒前
冷傲的弘文完成签到,获得积分10
2秒前
充电宝应助CheeseD采纳,获得10
2秒前
3秒前
3秒前
4秒前
4秒前
4秒前
5秒前
开放灭绝发布了新的文献求助10
6秒前
chenqiumu应助dddyrrrrr采纳,获得30
6秒前
秉烛夜游完成签到,获得积分10
6秒前
小郭最帅发布了新的文献求助10
8秒前
xybc完成签到,获得积分10
8秒前
8秒前
小蘑菇应助克拉采纳,获得10
8秒前
10秒前
10秒前
QQ牛关注了科研通微信公众号
12秒前
SciGPT应助讨厌桃子采纳,获得10
13秒前
问题多多发布了新的文献求助30
14秒前
14秒前
11111发布了新的文献求助10
14秒前
15秒前
15秒前
年轻人完成签到,获得积分10
15秒前
NEKO发布了新的文献求助10
16秒前
16秒前
搁浅完成签到,获得积分10
17秒前
完美世界应助儒雅采纳,获得10
17秒前
年轻的迎南完成签到,获得积分10
17秒前
爆米花应助跳跃雁开采纳,获得30
17秒前
量子星尘发布了新的文献求助10
18秒前
Mania发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424571
求助须知:如何正确求助?哪些是违规求助? 4538919
关于积分的说明 14164314
捐赠科研通 4455873
什么是DOI,文献DOI怎么找? 2443988
邀请新用户注册赠送积分活动 1435060
关于科研通互助平台的介绍 1412452