Semantic Communications for Image Recovery and Classification via Deep Joint Source and Channel Coding

计算机科学 接头(建筑物) 人工智能 编码(社会科学) 信道编码 无线 解码方法 模式识别(心理学) 语音识别 电信 计算机视觉 数学 统计 工程类 建筑工程
作者
Zhonghao Lyu,Guangxu Zhu,Jie Xu,Bo Ai,Shuguang Cui
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:23 (8): 8388-8404 被引量:10
标识
DOI:10.1109/twc.2023.3349330
摘要

With the recent advancements in edge artificial intelligence (AI), future sixth-generation (6G) networks need to support new AI tasks such as classification and clustering apart from data recovery. Motivated by the success of deep learning, the semantic-aware and task-oriented communications with deep joint source and channel coding (JSCC) have emerged as new paradigm shifts in 6G from the conventional data-oriented communications with separate source and channel coding (SSCC). However, most existing works focused on the deep JSCC designs for one task of data recovery or AI task execution independently, which cannot be transferred to other unintended tasks. Differently, this paper investigates the JSCC semantic communications to support multi-task services, by performing the image data recovery and classification task execution simultaneously. First, we propose a new end-to-end deep JSCC framework by unifying the coding rate reduction maximization and the mean square error (MSE) minimization in the loss function. Here, the coding rate reduction maximization facilitates the learning of discriminative features for enabling to perform classification tasks directly in the feature space, and the MSE minimization helps the learning of informative features for high-quality image data recovery. Next, to further improve the robustness against variational wireless channels, we propose a new gated deep JSCC design, in which a gated net is incorporated for adaptively pruning the output features to adjust their dimensions based on channel conditions. Finally, we present extensive numerical experiments to validate the performance of our proposed deep JSCC designs as compared to various benchmark schemes. It is shown that our proposed designs simultaneously provide efficient multi-task services, and the proposed gated deep JSCC framework efficiently reduces the communication overhead with only marginal performance loss. It is also shown that performing the classification task on the feature space via coding rate reduction maximization is able to better defend the label corruption than the traditional label-fitting methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
脑洞疼应助xiw采纳,获得10
5秒前
百里凡松完成签到,获得积分10
5秒前
5秒前
5秒前
尔雅完成签到,获得积分10
8秒前
Wfmmm完成签到,获得积分10
8秒前
moncypool发布了新的文献求助10
9秒前
今晚打母驴应助san采纳,获得10
10秒前
江沅发布了新的文献求助10
12秒前
12秒前
整齐向卉完成签到,获得积分10
13秒前
敲一下叮发布了新的文献求助10
14秒前
zhuann发布了新的文献求助10
17秒前
17秒前
大个应助江沅采纳,获得10
19秒前
20秒前
20秒前
YC发布了新的文献求助10
21秒前
喜悦元正完成签到,获得积分10
23秒前
8R60d8应助研友_8KX15L采纳,获得10
25秒前
传奇3应助哈哈哈采纳,获得10
25秒前
yiersan发布了新的文献求助10
26秒前
26秒前
zhl完成签到,获得积分10
30秒前
zhuann完成签到,获得积分10
30秒前
xiw发布了新的文献求助10
32秒前
FashionBoy应助moncypool采纳,获得10
33秒前
34秒前
35秒前
传奇3应助北木萧采纳,获得10
35秒前
茶博士发布了新的文献求助10
35秒前
成就的绮烟完成签到 ,获得积分10
37秒前
38秒前
亚稳态应助勤恳的天蓝采纳,获得10
38秒前
40秒前
40秒前
小瓜完成签到 ,获得积分10
40秒前
1477发布了新的文献求助10
40秒前
夏深发布了新的文献求助20
41秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212256
求助须知:如何正确求助?哪些是违规求助? 2861151
关于积分的说明 8127381
捐赠科研通 2527070
什么是DOI,文献DOI怎么找? 1360697
科研通“疑难数据库(出版商)”最低求助积分说明 643289
邀请新用户注册赠送积分活动 615635