ESDINet: Efficient Shallow-Deep Interaction Network for Semantic Segmentation of High-Resolution Aerial Images

计算机科学 分割 推论 人工智能 背景(考古学) 图像分割 数据挖掘 模式识别(心理学) 古生物学 生物
作者
Xiangrong Zhang,Zhenhang Weng,Peng Zhu,Xiao Han,Jin Zhu,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:5
标识
DOI:10.1109/tgrs.2024.3351437
摘要

Semantic segmentation of high-resolution remote sensing images is essential in many fields. Nevertheless, in practical applications, constrained by limited computational resources and complex network structures, many advanced models on semantic segmentation often fail to show efficient performance, prompting research on lightweight models. For lightweight semantic segmentation models, the two-branch architecture has been shown to work well in speed and performance. However, such two-branch architectures usually do not utilize enough information for shallow structures to efficiently provide richer multiscale information for the two branches. The lightweight modules it uses are difficult to extract the global context information of the features effectively. Compared with the current advanced semantic segmentation models, lightweight models still have some differences in performance. In order to solve these problems, we propose a new lightweight dual-branch architecture efficient shallow-deep interaction network (ESDINet), which can quickly extract low-level spatial and high-level semantic information of images through the detail branch and semantic branch. Specifically, we have constructed an efficient double-branch structure with shallow and deep different interactions to achieve multiscale information interaction. At the same time, we optimize the semantic branch and propose a new linear attention block to effectively improve the global perception of the semantic branch. We performed extensive experiments and the results show that our model achieves a good balance between segmentation accuracy and inference speed. In particular, ESDINet achieves 82.03% mean intersection over union (mIoU) on the Vaihingen test set, while the proposed model achieves an inference speed of 116 frames/s (FPS) for $512\times512$ inputs on a single NVIDIA GTX 2080Ti GPU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
英姑应助Sky采纳,获得10
2秒前
可爱小天才完成签到 ,获得积分10
2秒前
2秒前
想吃螺蛳粉应助fafa采纳,获得10
2秒前
研友_VZG7GZ应助嗨皮牙采纳,获得10
2秒前
半夏完成签到,获得积分10
2秒前
xl发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
李健的小迷弟应助ju龙哥采纳,获得10
4秒前
bobo完成签到,获得积分10
4秒前
xlbxlbxlb发布了新的文献求助10
4秒前
池鱼完成签到,获得积分10
4秒前
丘比特应助nightgaunt采纳,获得10
4秒前
无骨鸡爪不长胖完成签到,获得积分10
5秒前
帝国的绝凶虎纯真丁一郎完成签到,获得积分10
5秒前
今后应助yangfuning采纳,获得10
5秒前
乐一李发布了新的文献求助10
5秒前
5秒前
7秒前
7秒前
诗谙发布了新的文献求助30
7秒前
7秒前
酷狗小熊发布了新的文献求助10
7秒前
Kkk发布了新的文献求助10
7秒前
53发布了新的文献求助10
7秒前
思源应助郭初一采纳,获得10
8秒前
科研通AI2S应助胡博士采纳,获得10
8秒前
义气语儿完成签到,获得积分10
8秒前
9秒前
9秒前
ashore发布了新的文献求助10
9秒前
9秒前
科研通AI6应助llllll采纳,获得30
9秒前
直率铁身完成签到,获得积分10
9秒前
10秒前
体贴紫发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545904
求助须知:如何正确求助?哪些是违规求助? 4631873
关于积分的说明 14623268
捐赠科研通 4573585
什么是DOI,文献DOI怎么找? 2507662
邀请新用户注册赠送积分活动 1484354
关于科研通互助平台的介绍 1455606