ESDINet: Efficient Shallow-Deep Interaction Network for Semantic Segmentation of High-Resolution Aerial Images

计算机科学 分割 推论 人工智能 背景(考古学) 图像分割 数据挖掘 模式识别(心理学) 古生物学 生物
作者
Xiangrong Zhang,Zhenhang Weng,Peng Zhu,Xiao Han,Jin Zhu,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2024.3351437
摘要

Semantic segmentation of high-resolution remote sensing images is essential in many fields. Nevertheless, in practical applications, constrained by limited computational resources and complex network structures, many advanced models on semantic segmentation often fail to show efficient performance, prompting research on lightweight models. For lightweight semantic segmentation models, the two-branch architecture has been shown to work well in speed and performance. However, such two-branch architectures usually do not utilize enough information for shallow structures to efficiently provide richer multi-scale information for the two-branch. The lightweight modules it uses are difficult to extract the global context information of the features effectively. Compared with the current advanced semantic segmentation models, lightweight models still have some differences in performance. In order to solve these problems, we propose a new lightweight dual-branch architecture ESDINet, which can quickly extract low-level spatial and high-level semantic information of images through the detail branch and semantic branch. Specifically, we have constructed an efficient double-branch structure with shallow and deep different interactions to achieve multi-scale information interaction. At the same time, we optimize the semantic branch and propose a new linear attention block to effectively improve the global perception of the semantic branch. We performed extensive experiments and the results show that our model achieves a good balance between segmentation accuracy and inference speed. In particular, ESDINet achieves 82.03% mIoU on the Vaihingen test set, while the proposed model achieves an inference speed of 116 FPS for 512 × 512 inputs on a single NVIDIA GTX 2080Ti GPU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pjs完成签到,获得积分10
刚刚
刚刚
科研通AI2S应助hover采纳,获得10
1秒前
1秒前
1秒前
1秒前
李健的小迷弟应助还活着采纳,获得10
1秒前
我午饭呢发布了新的文献求助10
2秒前
舒心流沙关注了科研通微信公众号
3秒前
3秒前
Morpheus发布了新的文献求助10
4秒前
5秒前
糖果乖乖发布了新的文献求助10
5秒前
5秒前
pllll发布了新的文献求助30
6秒前
6秒前
6秒前
义气凝阳发布了新的文献求助20
6秒前
7秒前
Bellamie应助甜蜜的曼冬采纳,获得10
7秒前
7秒前
3333完成签到,获得积分10
7秒前
tianzml0应助fireking_sid采纳,获得50
7秒前
Snoopy完成签到,获得积分10
7秒前
小媛媛发布了新的文献求助10
8秒前
猫丞完成签到,获得积分10
8秒前
Gilana应助五五采纳,获得30
9秒前
9秒前
xyz完成签到,获得积分10
9秒前
10秒前
天玄一刀发布了新的文献求助10
10秒前
未知数发布了新的文献求助10
10秒前
xiao白完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
YaoHui发布了新的文献求助10
12秒前
Morpheus完成签到,获得积分20
13秒前
游戏玩家完成签到,获得积分10
13秒前
还活着发布了新的文献求助10
13秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3169709
求助须知:如何正确求助?哪些是违规求助? 2820854
关于积分的说明 7932432
捐赠科研通 2481185
什么是DOI,文献DOI怎么找? 1321712
科研通“疑难数据库(出版商)”最低求助积分说明 633340
版权声明 602561