Residual Attention Augmented U-shaped Network for One-bit SAR Image Restoration

残余物 合成孔径雷达 图像复原 计算机科学 人工智能 计算机视觉 雷达成像 遥感 图像(数学) 图像处理 地质学 算法 电信 雷达
作者
L. B. Guo,Yang‐Yang Dong,Chunxi Dong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2024.3357812
摘要

The application of one-bit sampling technology in synthetic aperture radar (SAR) systems has great potential due to its attractive advantages such as fast sampling speed, low data rate, high real-time performance, cheap hardware cost, and low energy consumption. However, one-bit sampling produces ghost targets in SAR imaging results and causes a significant reduction in the resolution and sharpness of SAR images, which is a challenge for one-bit SAR imaging. We develop a novel residual attention augmented U-shaped network (RAAUNet) with an encoder-and-decoder architecture, capable of learning the nonlinear mapping from one-bit SAR images to high-precision SAR images through end-to-end training. To enhance the efficiency of inter-module information communication at each level, our RAAUNet adopts three types of helpful skip connections that serve distinct roles in improving learning efficiency and convergence for the entire network, reducing information loss and preserving spatial details during encoding processing, as well as transmitting multi-resolution residual features. Furthermore, several specifically designed components are integrated into our network to improve its feature learning and perception abilities, where the attentive residual convolution module with the attention mechanism is employed in both encoders and decoders to endow them with the discriminative learning ability and enhance the nonlinear representation capacity, and the multi-resolution fusion recovery module enriches contextual and spatial details by fusing multi-resolution residual results, thereby improving the quality of the reconstructed SAR image. Numerical experiments on three synthetic one-bit SAR image datasets demonstrate that the RAAUNet achieves favorable performance against the state-of-the-art methods for one-bit SAR image restoration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
yfy发布了新的文献求助10
2秒前
涅爹发布了新的文献求助10
3秒前
兔子完成签到 ,获得积分10
3秒前
上岸上岸完成签到,获得积分10
4秒前
4秒前
彩色的灭龙完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
7秒前
任性的白玉完成签到 ,获得积分10
7秒前
鹅鹅发布了新的文献求助10
10秒前
11秒前
小清完成签到,获得积分10
12秒前
zinc发布了新的文献求助10
12秒前
13秒前
14秒前
英俊的铭应助yiyososo采纳,获得10
14秒前
川桜发布了新的文献求助20
14秒前
16秒前
解语花完成签到,获得积分10
16秒前
疯子扬发布了新的文献求助10
17秒前
19秒前
无花果应助能干的cen采纳,获得10
19秒前
共享精神应助务实的海之采纳,获得30
20秒前
jzyy完成签到,获得积分10
21秒前
java完成签到,获得积分10
24秒前
解语花发布了新的文献求助10
25秒前
26秒前
27秒前
27秒前
清淮完成签到 ,获得积分10
28秒前
28秒前
ssgecust完成签到,获得积分10
29秒前
30秒前
30秒前
秀丽的晓凡完成签到,获得积分10
31秒前
半青一江完成签到 ,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Symbiosis: A Very Short Introduction 1500
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4961600
求助须知:如何正确求助?哪些是违规求助? 4221894
关于积分的说明 13148834
捐赠科研通 4005974
什么是DOI,文献DOI怎么找? 2192626
邀请新用户注册赠送积分活动 1206485
关于科研通互助平台的介绍 1118175