Residual Attention Augmented U-shaped Network for One-bit SAR Image Restoration

残余物 合成孔径雷达 图像复原 计算机科学 人工智能 计算机视觉 雷达成像 遥感 图像(数学) 图像处理 地质学 算法 电信 雷达
作者
L. B. Guo,Yang‐Yang Dong,Chunxi Dong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2024.3357812
摘要

The application of one-bit sampling technology in synthetic aperture radar (SAR) systems has great potential due to its attractive advantages such as fast sampling speed, low data rate, high real-time performance, cheap hardware cost, and low energy consumption. However, one-bit sampling produces ghost targets in SAR imaging results and causes a significant reduction in the resolution and sharpness of SAR images, which is a challenge for one-bit SAR imaging. We develop a novel residual attention augmented U-shaped network (RAAUNet) with an encoder-and-decoder architecture, capable of learning the nonlinear mapping from one-bit SAR images to high-precision SAR images through end-to-end training. To enhance the efficiency of inter-module information communication at each level, our RAAUNet adopts three types of helpful skip connections that serve distinct roles in improving learning efficiency and convergence for the entire network, reducing information loss and preserving spatial details during encoding processing, as well as transmitting multi-resolution residual features. Furthermore, several specifically designed components are integrated into our network to improve its feature learning and perception abilities, where the attentive residual convolution module with the attention mechanism is employed in both encoders and decoders to endow them with the discriminative learning ability and enhance the nonlinear representation capacity, and the multi-resolution fusion recovery module enriches contextual and spatial details by fusing multi-resolution residual results, thereby improving the quality of the reconstructed SAR image. Numerical experiments on three synthetic one-bit SAR image datasets demonstrate that the RAAUNet achieves favorable performance against the state-of-the-art methods for one-bit SAR image restoration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
动人的雁枫完成签到 ,获得积分10
刚刚
情怀应助Christine采纳,获得30
2秒前
3秒前
nbing完成签到,获得积分10
3秒前
动人的雁枫关注了科研通微信公众号
4秒前
geoyuan完成签到,获得积分10
4秒前
4秒前
4秒前
PANGDA完成签到 ,获得积分10
5秒前
贾翔发布了新的文献求助10
5秒前
6秒前
小明明应助Master_Ye采纳,获得10
6秒前
英俊的铭应助可不采纳,获得10
7秒前
Garfield完成签到,获得积分10
7秒前
无聊的翠芙完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
可乐清欢发布了新的文献求助10
8秒前
tangaohao_123456完成签到,获得积分10
8秒前
9秒前
9秒前
机灵水卉发布了新的文献求助10
9秒前
DARKNESS发布了新的文献求助10
10秒前
10秒前
搜集达人应助qyj采纳,获得10
10秒前
透明人发布了新的文献求助50
10秒前
10秒前
pluto应助紫罗兰花海采纳,获得10
10秒前
乔乔兔发布了新的文献求助10
11秒前
11秒前
司徒水绿完成签到 ,获得积分10
12秒前
13秒前
13秒前
Carlnye完成签到 ,获得积分20
13秒前
14秒前
orixero应助shenzhou9采纳,获得10
14秒前
14秒前
王小橘完成签到,获得积分10
14秒前
15秒前
烟花应助Mely0203采纳,获得10
15秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646