Residual Attention Augmented U-shaped Network for One-bit SAR Image Restoration

残余物 合成孔径雷达 图像复原 计算机科学 人工智能 计算机视觉 雷达成像 遥感 图像(数学) 图像处理 地质学 算法 电信 雷达
作者
L. B. Guo,Yang‐Yang Dong,Chunxi Dong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2024.3357812
摘要

The application of one-bit sampling technology in synthetic aperture radar (SAR) systems has great potential due to its attractive advantages such as fast sampling speed, low data rate, high real-time performance, cheap hardware cost, and low energy consumption. However, one-bit sampling produces ghost targets in SAR imaging results and causes a significant reduction in the resolution and sharpness of SAR images, which is a challenge for one-bit SAR imaging. We develop a novel residual attention augmented U-shaped network (RAAUNet) with an encoder-and-decoder architecture, capable of learning the nonlinear mapping from one-bit SAR images to high-precision SAR images through end-to-end training. To enhance the efficiency of inter-module information communication at each level, our RAAUNet adopts three types of helpful skip connections that serve distinct roles in improving learning efficiency and convergence for the entire network, reducing information loss and preserving spatial details during encoding processing, as well as transmitting multi-resolution residual features. Furthermore, several specifically designed components are integrated into our network to improve its feature learning and perception abilities, where the attentive residual convolution module with the attention mechanism is employed in both encoders and decoders to endow them with the discriminative learning ability and enhance the nonlinear representation capacity, and the multi-resolution fusion recovery module enriches contextual and spatial details by fusing multi-resolution residual results, thereby improving the quality of the reconstructed SAR image. Numerical experiments on three synthetic one-bit SAR image datasets demonstrate that the RAAUNet achieves favorable performance against the state-of-the-art methods for one-bit SAR image restoration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
典雅天玉完成签到,获得积分20
2秒前
柯柯完成签到 ,获得积分10
3秒前
18062677029完成签到 ,获得积分10
3秒前
无住生心完成签到,获得积分10
6秒前
弄井完成签到,获得积分10
7秒前
打打应助大雄采纳,获得10
8秒前
hdh完成签到,获得积分10
12秒前
hyx完成签到 ,获得积分10
14秒前
善良的火完成签到 ,获得积分10
16秒前
一心想出文章完成签到,获得积分10
17秒前
18秒前
万能图书馆应助雷子采纳,获得10
20秒前
兜兜完成签到 ,获得积分10
20秒前
奶糖喵完成签到 ,获得积分10
21秒前
LM完成签到,获得积分10
23秒前
23秒前
zhangxr发布了新的文献求助10
24秒前
25秒前
oceanao应助靓丽安珊采纳,获得10
27秒前
hao发布了新的文献求助10
29秒前
夕赣完成签到 ,获得积分10
30秒前
32秒前
三木完成签到 ,获得积分10
32秒前
晨雾完成签到 ,获得积分10
35秒前
王螺丝完成签到,获得积分10
35秒前
雷子发布了新的文献求助10
36秒前
lyne完成签到 ,获得积分10
37秒前
37秒前
zhang完成签到,获得积分10
39秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
tramp应助科研通管家采纳,获得10
41秒前
哎嘿应助科研通管家采纳,获得10
41秒前
852应助科研通管家采纳,获得10
41秒前
香蕉觅云应助科研通管家采纳,获得10
41秒前
脑洞疼应助科研通管家采纳,获得10
41秒前
斯文败类应助科研通管家采纳,获得10
41秒前
tramp应助科研通管家采纳,获得20
41秒前
哎嘿应助科研通管家采纳,获得10
41秒前
研友_VZG7GZ应助科研通管家采纳,获得10
42秒前
梓泽丘墟应助科研通管家采纳,获得10
42秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162519
求助须知:如何正确求助?哪些是违规求助? 2813377
关于积分的说明 7900197
捐赠科研通 2472938
什么是DOI,文献DOI怎么找? 1316595
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175