Comparison of leaf chlorophyll content retrieval performance of citrus using FOD and CWT methods with field-based full-spectrum hyperspectral reflectance data

高光谱成像 偏最小二乘回归 数学 特征(语言学) 均方误差 相关系数 遥感 模式识别(心理学) 生物系统 人工智能 统计 计算机科学 语言学 生物 地质学 哲学
作者
Bin Xiao,Sunzhe Li,Shiqing Dou,Hongchang He,Bolin Fu,Tengxu Zhang,Weiwei Sun,Yanli Yang,Yuankang Xiong,Jinke Shi,Jie Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:217: 108559-108559 被引量:43
标识
DOI:10.1016/j.compag.2023.108559
摘要

Citrus is one of the most economically valuable fruit trees in the world, for which leaf chlorophyll content (LCC) serves as a crucial indicator for evaluating its growth and health status. However, the quantitative estimation of LCC using remote-sensing techniques is still challenging owing to unclear sensitive spectral ranges, baseline drift and overlapping spectrum peaks. To resolve these issues, we clarified the spectral response characteristics of citrus LCC using fractional-order derivatives (FOD) and continuous wavelet transform (CWT) methods to determine its sensitive spectral range with in situ full-spectrum leaf hyperspectral data. We proposed a novel method for estimating the LCC of citrus by combining an ensemble learning regression model based on Hyperopt optimization (H-ELR) with partial least squares regression (PLSR) using the ultra-high dimensional feature variables produced by dual- and tri-band combination strategies. We evaluated the retrieval performance of LCC between the FOD- and CWT-based optimal spectral feature variables. Besides, we further examined the feasibility of improving the estimation accuracy of LCC by the combination of their optimal feature variables. Finally, we evaluated the effect of the spectral curve trend changes and different dimensional spectral features on LCC estimation. The results showed that: (1) The FOD- and CWT-based methods improved the correlation between original spectral reflectance and LCC, with the correlation coefficient increasing by 0.046 and 0.054, respectively. We confirmed that 425–740 nm is the optimal spectral range for LCC estimation. (2) We found that the 0.9 order derivative Tri-band index (TBI2 (R571, R1697, R740)) constructed by combining the sensitive spectral bands of leaf water content achieved a high-precision LCC estimation (R2 = 0.876). In addition, the MERIS terrestrial chlorophyll index (MTCI) constructed based on the scale6 of CWT also gained good retrieval accuracy (R2 = 0.806). (3) We demonstrated that a combination of FOD-based and CWT-based sensitive spectral features improves estimation accuracies (R2 = 0.891) of LCC and revealed that the reflectance peaks and slope peaks at 550 and 750 nm are essential variables for predicting the citrus LCC. (4) The combination of PLSR and H-ELR model provided a good retrieval performance of citrus LCC with the kurtosis (γ = 3.2) and skewness (Sk = 0.066) of the residual prediction values. Our proposed method can provide a scientific basis for estimating LCC and other physiological parameters of citrus and other crop types, which is also important to optimize agricultural management practices and improve crop yield.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飘逸百褶裙完成签到,获得积分20
3秒前
补药学习发布了新的文献求助10
4秒前
proteinpurify完成签到,获得积分10
5秒前
5秒前
宁人完成签到,获得积分20
7秒前
8秒前
vera完成签到,获得积分10
9秒前
10秒前
02发布了新的文献求助10
11秒前
宁人发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
Ly完成签到,获得积分20
12秒前
简单花花发布了新的文献求助10
13秒前
科研通AI6应助美好凝莲采纳,获得30
13秒前
泡泡完成签到 ,获得积分10
13秒前
ASHES发布了新的文献求助10
15秒前
小二郎应助vincent采纳,获得10
16秒前
嗡嗡嗡完成签到,获得积分10
16秒前
Ly发布了新的文献求助10
17秒前
儒雅的雁山完成签到 ,获得积分10
20秒前
20秒前
无花果应助马里奥采纳,获得10
20秒前
Booiys完成签到,获得积分10
21秒前
21秒前
绒裤病毒发布了新的文献求助10
21秒前
青田101完成签到,获得积分10
22秒前
fishhh完成签到,获得积分10
23秒前
庸人自扰完成签到,获得积分10
23秒前
23秒前
爆米花应助细心的如天采纳,获得10
24秒前
量子星尘发布了新的文献求助10
24秒前
xyy发布了新的文献求助30
25秒前
四海发布了新的文献求助10
25秒前
26秒前
26秒前
26秒前
Sieg完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5530788
求助须知:如何正确求助?哪些是违规求助? 4619762
关于积分的说明 14570057
捐赠科研通 4559290
什么是DOI,文献DOI怎么找? 2498318
邀请新用户注册赠送积分活动 1478269
关于科研通互助平台的介绍 1449838