已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Comparison of leaf chlorophyll content retrieval performance of citrus using FOD and CWT methods with field-based full-spectrum hyperspectral reflectance data

高光谱成像 偏最小二乘回归 数学 特征(语言学) 均方误差 相关系数 遥感 模式识别(心理学) 生物系统 人工智能 统计 计算机科学 语言学 生物 地质学 哲学
作者
Bin Xiao,Sunzhe Li,Shiqing Dou,Hongchang He,Bolin Fu,Tengxu Zhang,Weiwei Sun,Yanli Yang,Yuankang Xiong,Jinke Shi,Jie Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:217: 108559-108559 被引量:20
标识
DOI:10.1016/j.compag.2023.108559
摘要

Citrus is one of the most economically valuable fruit trees in the world, for which leaf chlorophyll content (LCC) serves as a crucial indicator for evaluating its growth and health status. However, the quantitative estimation of LCC using remote-sensing techniques is still challenging owing to unclear sensitive spectral ranges, baseline drift and overlapping spectrum peaks. To resolve these issues, we clarified the spectral response characteristics of citrus LCC using fractional-order derivatives (FOD) and continuous wavelet transform (CWT) methods to determine its sensitive spectral range with in situ full-spectrum leaf hyperspectral data. We proposed a novel method for estimating the LCC of citrus by combining an ensemble learning regression model based on Hyperopt optimization (H-ELR) with partial least squares regression (PLSR) using the ultra-high dimensional feature variables produced by dual- and tri-band combination strategies. We evaluated the retrieval performance of LCC between the FOD- and CWT-based optimal spectral feature variables. Besides, we further examined the feasibility of improving the estimation accuracy of LCC by the combination of their optimal feature variables. Finally, we evaluated the effect of the spectral curve trend changes and different dimensional spectral features on LCC estimation. The results showed that: (1) The FOD- and CWT-based methods improved the correlation between original spectral reflectance and LCC, with the correlation coefficient increasing by 0.046 and 0.054, respectively. We confirmed that 425–740 nm is the optimal spectral range for LCC estimation. (2) We found that the 0.9 order derivative Tri-band index (TBI2 (R571, R1697, R740)) constructed by combining the sensitive spectral bands of leaf water content achieved a high-precision LCC estimation (R2 = 0.876). In addition, the MERIS terrestrial chlorophyll index (MTCI) constructed based on the scale6 of CWT also gained good retrieval accuracy (R2 = 0.806). (3) We demonstrated that a combination of FOD-based and CWT-based sensitive spectral features improves estimation accuracies (R2 = 0.891) of LCC and revealed that the reflectance peaks and slope peaks at 550 and 750 nm are essential variables for predicting the citrus LCC. (4) The combination of PLSR and H-ELR model provided a good retrieval performance of citrus LCC with the kurtosis (γ = 3.2) and skewness (Sk = 0.066) of the residual prediction values. Our proposed method can provide a scientific basis for estimating LCC and other physiological parameters of citrus and other crop types, which is also important to optimize agricultural management practices and improve crop yield.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tanjing0912发布了新的文献求助10
3秒前
彭于晏应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
cocolu应助科研通管家采纳,获得10
6秒前
han应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
cocolu应助科研通管家采纳,获得10
6秒前
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
脑洞疼应助紫紫吃菠菜采纳,获得10
8秒前
成懂事长发布了新的文献求助10
8秒前
仔wang发布了新的文献求助10
9秒前
wanci应助迷你的珠采纳,获得10
12秒前
13秒前
Hello应助515采纳,获得30
14秒前
tanjing0912完成签到,获得积分10
14秒前
何博发布了新的文献求助30
19秒前
23秒前
fang完成签到 ,获得积分10
23秒前
24秒前
24秒前
26秒前
仔wang完成签到,获得积分10
26秒前
小二郎应助汪洋采纳,获得10
26秒前
充电宝应助xy采纳,获得10
26秒前
fqx发布了新的文献求助30
29秒前
29秒前
闫闫完成签到,获得积分20
29秒前
zhffdss完成签到,获得积分20
29秒前
515发布了新的文献求助30
29秒前
30秒前
bkagyin应助LLQ采纳,获得10
30秒前
李爱国应助sensensmart采纳,获得10
32秒前
伊萨卡完成签到 ,获得积分10
32秒前
快乐顽童完成签到,获得积分10
33秒前
无花果应助闫闫采纳,获得30
34秒前
zxcsdfa发布了新的文献求助10
34秒前
35秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463477
求助须知:如何正确求助?哪些是违规求助? 3056839
关于积分的说明 9054254
捐赠科研通 2746752
什么是DOI,文献DOI怎么找? 1507036
科研通“疑难数据库(出版商)”最低求助积分说明 696327
邀请新用户注册赠送积分活动 695883