Comparison of leaf chlorophyll content retrieval performance of citrus using FOD and CWT methods with field-based full-spectrum hyperspectral reflectance data

高光谱成像 偏最小二乘回归 数学 特征(语言学) 均方误差 相关系数 遥感 模式识别(心理学) 生物系统 人工智能 统计 计算机科学 语言学 生物 地质学 哲学
作者
Bin Xiao,Sunzhe Li,Shiqing Dou,Hongchang He,Bolin Fu,Tengxu Zhang,Weiwei Sun,Yanli Yang,Yuankang Xiong,Jinke Shi,Jie Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:217: 108559-108559 被引量:20
标识
DOI:10.1016/j.compag.2023.108559
摘要

Citrus is one of the most economically valuable fruit trees in the world, for which leaf chlorophyll content (LCC) serves as a crucial indicator for evaluating its growth and health status. However, the quantitative estimation of LCC using remote-sensing techniques is still challenging owing to unclear sensitive spectral ranges, baseline drift and overlapping spectrum peaks. To resolve these issues, we clarified the spectral response characteristics of citrus LCC using fractional-order derivatives (FOD) and continuous wavelet transform (CWT) methods to determine its sensitive spectral range with in situ full-spectrum leaf hyperspectral data. We proposed a novel method for estimating the LCC of citrus by combining an ensemble learning regression model based on Hyperopt optimization (H-ELR) with partial least squares regression (PLSR) using the ultra-high dimensional feature variables produced by dual- and tri-band combination strategies. We evaluated the retrieval performance of LCC between the FOD- and CWT-based optimal spectral feature variables. Besides, we further examined the feasibility of improving the estimation accuracy of LCC by the combination of their optimal feature variables. Finally, we evaluated the effect of the spectral curve trend changes and different dimensional spectral features on LCC estimation. The results showed that: (1) The FOD- and CWT-based methods improved the correlation between original spectral reflectance and LCC, with the correlation coefficient increasing by 0.046 and 0.054, respectively. We confirmed that 425–740 nm is the optimal spectral range for LCC estimation. (2) We found that the 0.9 order derivative Tri-band index (TBI2 (R571, R1697, R740)) constructed by combining the sensitive spectral bands of leaf water content achieved a high-precision LCC estimation (R2 = 0.876). In addition, the MERIS terrestrial chlorophyll index (MTCI) constructed based on the scale6 of CWT also gained good retrieval accuracy (R2 = 0.806). (3) We demonstrated that a combination of FOD-based and CWT-based sensitive spectral features improves estimation accuracies (R2 = 0.891) of LCC and revealed that the reflectance peaks and slope peaks at 550 and 750 nm are essential variables for predicting the citrus LCC. (4) The combination of PLSR and H-ELR model provided a good retrieval performance of citrus LCC with the kurtosis (γ = 3.2) and skewness (Sk = 0.066) of the residual prediction values. Our proposed method can provide a scientific basis for estimating LCC and other physiological parameters of citrus and other crop types, which is also important to optimize agricultural management practices and improve crop yield.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
陈静静发布了新的文献求助10
2秒前
liuxinyu发布了新的文献求助10
2秒前
LHL发布了新的文献求助10
2秒前
3秒前
淡定元珊完成签到,获得积分10
3秒前
4秒前
今后应助雷霆爆爆凯采纳,获得10
4秒前
小蘑菇应助山苍梓采纳,获得10
4秒前
6秒前
qiu完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
Owen应助多摩川的烟花少年采纳,获得10
7秒前
12关闭了12文献求助
8秒前
qiucheng1227发布了新的文献求助10
8秒前
科研通AI6应助yayisheng采纳,获得10
8秒前
10秒前
10秒前
李牧发布了新的文献求助10
11秒前
11秒前
64658应助沧海一声笑采纳,获得10
12秒前
12秒前
浮游应助嘟噜采纳,获得10
12秒前
兴奋的若菱完成签到 ,获得积分10
12秒前
13秒前
dxm发布了新的文献求助10
13秒前
13秒前
量子星尘发布了新的文献求助30
14秒前
15秒前
15秒前
16秒前
林鑫璐发布了新的文献求助10
17秒前
17秒前
英吉利25发布了新的文献求助20
18秒前
叶郅晟发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950360
求助须知:如何正确求助?哪些是违规求助? 4213390
关于积分的说明 13103546
捐赠科研通 3995055
什么是DOI,文献DOI怎么找? 2186753
邀请新用户注册赠送积分活动 1202024
关于科研通互助平台的介绍 1115355