光催化
纳米片
异质结
材料科学
光化学
分解水
氧化还原
降级(电信)
半导体
化学工程
电子转移
纳米技术
光电子学
催化作用
化学
有机化学
冶金
电信
计算机科学
工程类
作者
L. Zhang,Jiachun Wu,Hongyun Xu,Huixia Li,Xiang Liu,Yanhua Song,Yanjuan Cui
标识
DOI:10.1016/j.colsurfa.2024.133297
摘要
The fabrication of non-metallic semiconductor heterojunction with superior redox capability for hydrogen (H2) evolution from water and environmental remediation has been emerging as a prospective strategy. Herein, a novel two-dimensional (2D) g-C3N4/Ni-MOF Z-scheme heterojunction was prepared by a facile sonication-gel self-assembly method with g-C3N4 and nickel metal-organic framework (Ni-MOF) nanosheets. The ultra-thin nanosheet structure of Ni-MOF was conducive to the formation of stable 2D heterojunctions. The opposite surface charge and matched band difference caused the charge flow from g-C3N4 to Ni-MOF, resulting in an interfacial built-in electric field. The optimized NMF/CN-9 attained the optimal 3aphotocatalytic activity towards the degradation of tetracycline (TC) and H2 evolution from water. Under visible light irradiation, the reaction rate for TC degradation (0.00497 min−1) and H2 evolution (15.6 μmol·h−1) over NMF/CN-9 was nearly 2.4 and 2.1 folds higher than that of g-C3N4, respectively. Besides, the photocatalytic performance of NMF/CN-9 was also nearly 2 times higher than that of g-C3N4 under simulated solar illumination. Such improvements were originated from higher photo-excited charge separation and superior redox ability derived from Z-scheme interfacial charge transfer. A possible photocatalytic mechanism was also proposed and the results indicated that efficient photo-induced electrons and reactive hole (h+), superoxide radical (·O2-) and hydroxyl radical (·OH) played a major role during the photocatalytic route. This work offers an intense insight into the construction of non-metallic semiconductor 2D heterojunctions for H2 evolution and environmental wastewater treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI