Breast Ultrasound Image Despeckling using Multi-filtering DFrFT and Adaptive Fast BM3D

散斑噪声 计算机科学 人工智能 计算机视觉 斑点图案 噪音(视频) 滤波器(信号处理) 乳腺超声检查 块(置换群论) 各项异性扩散 中值滤波器 模式识别(心理学) 图像处理 图像(数学) 数学 乳腺摄影术 乳腺癌 医学 几何学 癌症 内科学
作者
Tong Ying,Yaling Chen,Yu Yan,HE Rui-qing
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:246: 108042-108042
标识
DOI:10.1016/j.cmpb.2024.108042
摘要

Improving the quality of breast ultrasound images is of great significance for clinical diagnosis which can greatly boost the diagnostic accuracy of ultrasonography. However, due to the influence of ultrasound imaging principles and acquisition equipment, the collected ultrasound images naturally contain a large amount of speckle noise, which leads to a decrease in image quality and affects clinical diagnosis. To overcome this problem, we propose an improved denoising algorithm combining multi-filter DFrFT (Discrete Fractional Fourier Transform) and the adaptive fast BM3D (Block Matching and 3D collaborative filtering) method. Firstly, we provide the multi-filtering DFrFT method for preprocessing the original breast ultrasound image so as to remove some speckle noise early in fractional transformation domain. Based on the fractional frequency spectrum characteristics of breast ultrasound images, three types of filters are designed correspondingly in low, medium, and high frequency domains. And by integrating filtered images, the enhanced images are obtained which not only remove some speckle noise in background but also preserve the details of breast lesions. Secondly, for further enhancing the image quality on the basis of multi-filter DFrFT, we propose the adaptive fast BM3D method by introducing the DBSCAN-based super pixel segmentation to block matching process, which utilizes super pixel segmentation labels to provide a reference on how similar it is between target block and retrieval blocks. It reduces the number of blocks to be retrieved and make the matched blocks with more similar features. At last, the local noise parameter estimation is also adopted in the hard threshold filtering process of traditional BM3D algorithm to achieve local adaptive filtering and further improving the denoising effect. The synthetic data and real breast ultrasound data examples show that this combined method can improve the speckle suppression level and keep the fidelity of structure effectively without increasing time cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小包子完成签到,获得积分10
1秒前
Apricity完成签到,获得积分10
2秒前
薄荷小新完成签到 ,获得积分10
4秒前
独摇之完成签到,获得积分10
5秒前
tianzml0应助LQS采纳,获得10
5秒前
固态完成签到,获得积分10
6秒前
小雨完成签到,获得积分10
12秒前
体贴向珊完成签到,获得积分10
12秒前
嘎嘎坤完成签到 ,获得积分10
14秒前
选课完成签到,获得积分10
15秒前
山乞凡完成签到 ,获得积分10
16秒前
16秒前
17秒前
脆脆应答完成签到,获得积分10
18秒前
无私的颤完成签到,获得积分10
20秒前
hehe完成签到,获得积分20
22秒前
闲人不贤完成签到,获得积分10
23秒前
raiychemj发布了新的文献求助200
23秒前
田様应助街角哭泣采纳,获得10
25秒前
西北小教授完成签到,获得积分10
25秒前
可爱的坤完成签到,获得积分10
25秒前
妙手回春板蓝根完成签到,获得积分10
30秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
乐乐应助科研通管家采纳,获得10
32秒前
大模型应助科研通管家采纳,获得10
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
哎嘿应助科研通管家采纳,获得10
32秒前
乐乐应助科研通管家采纳,获得30
32秒前
哎嘿应助科研通管家采纳,获得10
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
32秒前
杨一完成签到 ,获得积分10
33秒前
raiychemj完成签到,获得积分10
33秒前
Jeremy完成签到 ,获得积分10
35秒前
38秒前
萌&完成签到,获得积分10
38秒前
左澄澄完成签到 ,获得积分10
40秒前
40秒前
unborned完成签到 ,获得积分10
41秒前
追寻的易巧完成签到 ,获得积分10
43秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162519
求助须知:如何正确求助?哪些是违规求助? 2813358
关于积分的说明 7900144
捐赠科研通 2472938
什么是DOI,文献DOI怎么找? 1316594
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175