Breast ultrasound image despeckling using multi-filtering DFrFT and adaptive fast BM3D

散斑噪声 计算机科学 人工智能 计算机视觉 斑点图案 噪音(视频) 滤波器(信号处理) 乳腺超声检查 块(置换群论) 各项异性扩散 中值滤波器 降噪 模式识别(心理学) 图像处理 图像(数学) 数学 乳腺摄影术 乳腺癌 医学 几何学 癌症 内科学
作者
Tong Ying,Yaling Chen,Yu Yan,HE Rui-qing
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:246: 108042-108042 被引量:1
标识
DOI:10.1016/j.cmpb.2024.108042
摘要

Improving the quality of breast ultrasound images is of great significance for clinical diagnosis which can greatly boost the diagnostic accuracy of ultrasonography. However, due to the influence of ultrasound imaging principles and acquisition equipment, the collected ultrasound images naturally contain a large amount of speckle noise, which leads to a decrease in image quality and affects clinical diagnosis. To overcome this problem, we propose an improved denoising algorithm combining multi-filter DFrFT (Discrete Fractional Fourier Transform) and the adaptive fast BM3D (Block Matching and 3D collaborative filtering) method. Firstly, we provide the multi-filtering DFrFT method for preprocessing the original breast ultrasound image so as to remove some speckle noise early in fractional transformation domain. Based on the fractional frequency spectrum characteristics of breast ultrasound images, three types of filters are designed correspondingly in low, medium, and high frequency domains. And by integrating filtered images, the enhanced images are obtained which not only remove some speckle noise in background but also preserve the details of breast lesions. Secondly, for further enhancing the image quality on the basis of multi-filter DFrFT, we propose the adaptive fast BM3D method by introducing the DBSCAN-based super pixel segmentation to block matching process, which utilizes super pixel segmentation labels to provide a reference on how similar it is between target block and retrieval blocks. It reduces the number of blocks to be retrieved and make the matched blocks with more similar features. At last, the local noise parameter estimation is also adopted in the hard threshold filtering process of traditional BM3D algorithm to achieve local adaptive filtering and further improving the denoising effect. The synthetic data and real breast ultrasound data examples show that this combined method can improve the speckle suppression level and keep the fidelity of structure effectively without increasing time cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jenny应助Eva采纳,获得10
刚刚
bkagyin应助17808352679采纳,获得10
刚刚
俭朴夜雪发布了新的文献求助10
1秒前
1秒前
林上草应助123采纳,获得10
1秒前
科目三应助AoiNG采纳,获得10
1秒前
2秒前
orixero应助雪白涵山采纳,获得20
2秒前
123发布了新的文献求助10
3秒前
ajing完成签到,获得积分10
3秒前
537完成签到,获得积分10
3秒前
3秒前
4秒前
清醒的ZY完成签到,获得积分10
4秒前
yxf发布了新的文献求助10
5秒前
大个应助叫滚滚采纳,获得10
5秒前
5秒前
Rui发布了新的文献求助10
6秒前
6秒前
China发布了新的文献求助10
6秒前
6秒前
ryze完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
莉莉发布了新的文献求助10
8秒前
9秒前
9秒前
辣辣完成签到,获得积分10
9秒前
桐桐应助白华苍松采纳,获得10
9秒前
华仔应助啊嚯采纳,获得10
9秒前
yasan完成签到,获得积分10
9秒前
10秒前
Fsy完成签到,获得积分10
10秒前
万能图书馆应助China采纳,获得10
10秒前
杨欢完成签到,获得积分10
10秒前
Stanley发布了新的文献求助10
10秒前
哭泣爆米花完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762