腌制
高光谱成像
偏最小二乘回归
残余物
生物系统
化学
数学
生物
模式识别(心理学)
食品科学
人工智能
统计
算法
计算机科学
作者
Yuanzhe Chen,Z. X. Chen,Qian Yan,Yuming Liu,Qiaohua Wang
标识
DOI:10.1016/j.ijbiomac.2024.130002
摘要
Salt content is a crucial indicator of the maturity and internal quality of salted duck eggs (SDEs) during the pickling process. However, there is currently no valid and rapid method available for accurately detecting salt content. In the present study, we utilized hyperspectral imaging to no-destructively determine the salt content in egg yolks, egg whites, and whole eggs during the curing period. Firstly, principal component analysis was applied to explain the characteristics of egg yolk and white morphology transformation of SDEs with different maturities during curing. Secondly, sensitive spectral factors representative of changes in the salt content of SDEs were extracted by three spectral transformations (Savitzky-Golay SG, continuum removal CR, and first-order derivation FD) and three approaches of selecting characteristic wavelengths (successive projection algorithm SPA, uninformative variables elimination UVE and competitive adaptive reweighting sampling algorithm CARS). The results of the PLSR model suggested that the optimal models for predicting salt content in egg yolks, whites, and whole eggs were SG-UVE-PLSR (predicted coefficient of determination Rp2=0.912, predicted standard deviation SEp=0.151, residual prediction deviation RPD = 3.371), CR-CARS-PLSR (Rp2=0.873, SEp=0.862, RPD = 2.806), and CR-UVE-PLSR (Rp2=0.877, SEp=0.680, RPD = 2.851), respectively. Eventually, the optimal prediction model for the salt content of the whole egg was employed to a pixel spectral matrix to calculate the salt content values of pixel points on the hyperspectral image of SDEs. Additionally, pseudo-color techniques were employed to visualize the spatial distribution of predicted salt content. This work will provide a theoretical foundation for rapidly detecting maturity and enabling high-throughput quality sorting of SDEs.
科研通智能强力驱动
Strongly Powered by AbleSci AI