Effect of Zn/Mg ratio on aging precipitates and mechanical property of high Mg content Al-Mg-Zn alloys with Sc and Zr additions

材料科学 极限抗拉强度 降水 微观结构 电子背散射衍射 冶金 材料的强化机理 高分辨率透射电子显微镜 合金 晶界 压痕硬度 沉淀硬化 透射电子显微镜 纳米技术 物理 气象学
作者
Yushen Huang,Peng Sun,Linlin Sun,Ya Li,Xiaoyu Zheng,Xiwu Li,Hongwei Yan,Bo Li,Yuling Liu,Yong Du
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:976: 173368-173368 被引量:14
标识
DOI:10.1016/j.jallcom.2023.173368
摘要

To enhance the strength of traditional 5xxx series alloys, this work designed Al-Mg-Zn alloys with high Mg content and different Zn/Mg ratios (wt%, Zn/Mg ratio<1.0) drawing inspiration from aging precipitation strengthening of 2xxx or 7xxx series aluminum alloys and thermodynamic calculation. Measurement of density, microhardness and tensile property as well as electron backscatter diffraction (EBSD) and high-resolution transmission electron microscopy (HRTEM) were used to investigate the effects of four different Zn/Mg ratios on the aging precipitation behavior and mechanical property of the studied alloys. As Zn/Mg ratio increases, both N3 (Zn/Mg = 0.37) and N4 (Zn/Mg = 0.71) precipitate fine and dispersed distributed nano T-Mg32(Al,Zn)49 precipitates. After a two-step aging treatment process of 90 °C/24 h + 140 °C/8 h, N4 exhibits tensile strength of 595.5 MPa, yield strength of 484 MPa, and elongation of 10.2% in the peak state. N4 features higher specific strength and lower density compared to the popular 7075-T6. The TEM analysis reveals that the addition of trace Sc and Zr leads to the formation of Al3(Sc,Zr) precipitates, which significantly refines grain size thus enhancing strength. The primary strengthening mechanisms of Al-Mg-Zn-Sc-Zr alloy include grain boundary strengthening, solid solution strengthening, and precipitation strengthening. A yield strength model considering multiple strengthening mechanisms and thermodynamic calculation has been adopted to achieve accurate yield strength predictions. This work provides reference for composition design, microstructure and property regulation of lightweight high-strength aluminum alloys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助忧虑的访梦采纳,获得10
刚刚
陆千万完成签到,获得积分10
1秒前
Leo完成签到,获得积分10
1秒前
爆米花应助完美世界采纳,获得10
1秒前
过儿发布了新的文献求助100
1秒前
小小申完成签到,获得积分20
2秒前
秋月黄完成签到 ,获得积分10
2秒前
zozox完成签到 ,获得积分10
2秒前
谢富杰完成签到,获得积分10
2秒前
zee完成签到,获得积分10
2秒前
2秒前
Umar完成签到,获得积分10
3秒前
lilioa85完成签到,获得积分10
3秒前
4秒前
wwwart发布了新的文献求助10
4秒前
Cui完成签到,获得积分10
4秒前
Cherry发布了新的文献求助10
4秒前
wnx001111发布了新的文献求助10
4秒前
花开四海完成签到 ,获得积分10
5秒前
江江江发布了新的文献求助10
6秒前
KJ完成签到,获得积分10
6秒前
中将完成签到,获得积分10
7秒前
8秒前
苗玉发布了新的文献求助10
8秒前
8秒前
吴雪完成签到 ,获得积分10
9秒前
橘漓儿发布了新的文献求助10
9秒前
昏睡的妙梦完成签到,获得积分10
9秒前
8R60d8应助安慕希采纳,获得10
9秒前
萌~Lucky完成签到,获得积分10
9秒前
Zz完成签到 ,获得积分10
9秒前
zd发布了新的文献求助10
10秒前
10秒前
方正完成签到,获得积分10
10秒前
科研通AI6应助小薇采纳,获得10
10秒前
AUGS酒完成签到,获得积分10
10秒前
渭北完成签到,获得积分10
10秒前
aodilee完成签到,获得积分10
10秒前
风信子12344321完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402234
求助须知:如何正确求助?哪些是违规求助? 4520826
关于积分的说明 14082112
捐赠科研通 4434847
什么是DOI,文献DOI怎么找? 2434434
邀请新用户注册赠送积分活动 1426649
关于科研通互助平台的介绍 1405392