材料科学
极限抗拉强度
降水
微观结构
电子背散射衍射
冶金
材料的强化机理
高分辨率透射电子显微镜
合金
晶界
压痕硬度
沉淀硬化
透射电子显微镜
纳米技术
物理
气象学
作者
Yushen Huang,Peng Sun,Linlin Sun,Ya Li,Xiaoyu Zheng,Xiwu Li,Hongwei Yan,Bo Li,Yuling Liu,Yuling Liu
标识
DOI:10.1016/j.jallcom.2023.173368
摘要
To enhance the strength of traditional 5xxx series alloys, this work designed Al-Mg-Zn alloys with high Mg content and different Zn/Mg ratios (wt%, Zn/Mg ratio<1.0) drawing inspiration from aging precipitation strengthening of 2xxx or 7xxx series aluminum alloys and thermodynamic calculation. Measurement of density, microhardness and tensile property as well as electron backscatter diffraction (EBSD) and high-resolution transmission electron microscopy (HRTEM) were used to investigate the effects of four different Zn/Mg ratios on the aging precipitation behavior and mechanical property of the studied alloys. As Zn/Mg ratio increases, both N3 (Zn/Mg = 0.37) and N4 (Zn/Mg = 0.71) precipitate fine and dispersed distributed nano T-Mg32(Al,Zn)49 precipitates. After a two-step aging treatment process of 90 °C/24 h + 140 °C/8 h, N4 exhibits tensile strength of 595.5 MPa, yield strength of 484 MPa, and elongation of 10.2% in the peak state. N4 features higher specific strength and lower density compared to the popular 7075-T6. The TEM analysis reveals that the addition of trace Sc and Zr leads to the formation of Al3(Sc,Zr) precipitates, which significantly refines grain size thus enhancing strength. The primary strengthening mechanisms of Al-Mg-Zn-Sc-Zr alloy include grain boundary strengthening, solid solution strengthening, and precipitation strengthening. A yield strength model considering multiple strengthening mechanisms and thermodynamic calculation has been adopted to achieve accurate yield strength predictions. This work provides reference for composition design, microstructure and property regulation of lightweight high-strength aluminum alloys.
科研通智能强力驱动
Strongly Powered by AbleSci AI