Joint optimization of online selling mode and logistics service strategy in e-commerce market with uncertain information

业务 服务(商务) 模式(计算机接口) 电子商务 代理(哲学) 综合后勤保障 佣金 单价 供应链 单位(环理论) 产业组织 营销 计算机科学 微观经济学 经济 过程管理 哲学 数学教育 数学 认识论 财务 万维网 操作系统
作者
Lisha Ye,Lin Chen,Jin Peng,Meng Xu,Junren Ming,Wan Qing
出处
期刊:Journal of Industrial and Management Optimization [American Institute of Mathematical Sciences]
被引量:1
标识
DOI:10.3934/jimo.2023152
摘要

In this paper, we consider a manufacturer who sells its products through an e-commerce platform. The manufacturer can decide whether to wholesale its products to the platform (namely the wholesale mode) or sell them directly to consumers through the platform and pay a commission (namely the agency mode). Meanwhile, there are two logistics service strategies within the e-commerce market, i.e., logistics service offered either by the manufacturer or the platform. Given the lack of historical samples of new products and the uncertainty of the e-commerce market, we characterize the unit cost of products and consumers' sensitivity to logistics service as uncertain variables. We explore the joint decision models for the online selling mode and logistics service strategy in the e-commerce market with uncertain information. Our findings indicate that the logistics service provided by the platform under the wholesale mode can achieve a 'win-win' outcome for both the manufacturer and the platform. However, under the agency mode, both the manufacturer and the platform prefer to take on the logistics services by themselves. Furthermore, the highest level of logistics service and the lowest retail price can be obtained when the manufacturer provides logistics service under the agency mode. The results reveal that as the uncertainty of unit cost of products or consumers' sensitivity to logistics service increases, the manufacturer and the platform can obtain greater expected profits by appropriately altering their pricing decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
OJL完成签到 ,获得积分10
1秒前
郑思榆完成签到 ,获得积分10
1秒前
wan完成签到 ,获得积分10
2秒前
cheney完成签到,获得积分10
3秒前
周周好运完成签到,获得积分10
3秒前
温言发布了新的文献求助20
5秒前
Rahul完成签到,获得积分10
5秒前
默默的豆芽完成签到,获得积分10
5秒前
wangyanwxy完成签到,获得积分10
6秒前
flymove完成签到,获得积分10
6秒前
科研通AI5应助平淡南霜采纳,获得10
8秒前
wanci应助小小爱吃百香果采纳,获得10
8秒前
9秒前
9秒前
9秒前
11秒前
我是站长才怪应助xg采纳,获得10
11秒前
decimalpoint完成签到 ,获得积分10
13秒前
Benliu发布了新的文献求助20
13秒前
13秒前
Carol完成签到,获得积分10
13秒前
sw98318发布了新的文献求助10
14秒前
wang1090完成签到,获得积分10
14秒前
奋斗的许婷2完成签到,获得积分10
14秒前
14秒前
15秒前
hll完成签到,获得积分20
15秒前
阳yang发布了新的文献求助10
15秒前
16秒前
wang1090发布了新的文献求助30
17秒前
呜呜呜呜完成签到,获得积分10
17秒前
17秒前
Riki发布了新的文献求助10
18秒前
88发布了新的文献求助10
18秒前
19秒前
充电宝应助zfy采纳,获得10
20秒前
sak完成签到,获得积分10
21秒前
Shuo Yang发布了新的文献求助20
21秒前
呜呜呜呜发布了新的文献求助10
21秒前
在水一方应助hhzz采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808