亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Decoupling and Integration Network for Camouflaged Object Detection

计算机科学 解耦(概率) 对象(语法) 人工智能 目标检测 计算机安全 模式识别(心理学) 工程类 控制工程
作者
Xiaofei Zhou,Zhicong Wu,Runmin Cong
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 7114-7129 被引量:10
标识
DOI:10.1109/tmm.2024.3360710
摘要

Recently, camouflaged object detection (COD), which suffers from numerous challenges such as low contrast between camouflaged objects and background and large variations of camouflaged object appearances, has received more and more concerns. However, the performance of existing camouflaged object detection methods is still unsatisfactory, especially when dealing with complex scenes. Therefore, in this paper, we propose a novel Decoupling and Integration Network (DINet) to detect camouflaged objects. Here, the depiction of camouflaged objects can be regarded as the iterative decoupling and integration of the body features and detail features, where the former focuses on the center of camouflaged objects and the latter contains pixels around edges. Concretely, firstly, we deploy two complementary decoder branches including a detail branch and a body branch to learn the decoupling features, namely body decoder features and detail decoder features. Particularly, each decoder block of the two branches incorporates features from three components, i.e. , the previous interactive feature fusion (IFF) module, adjacent encoder layers, and corresponding encoder layer. Besides, to further elevate the body decoder features, the body blocks also introduce the global contextual information, which is the combination of all body encoder features via the global context (GC) unit, to provide coarse object location information. Secondly, to integrate the two decoupling decoder features, we deploy the interactive feature fusion (IFF) module based on the interactive combination and channel attention. Following this way, we can progressively provide a complete and accurate representation for camouflaged objects. Extensive experiments on three public challenging datasets, including CAMO, COD10K, and NC4K, show that our DINet presents competitive performance when compared with the state-of-the-art models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
52秒前
zsmj23完成签到 ,获得积分0
1分钟前
1分钟前
xx发布了新的文献求助10
1分钟前
1分钟前
2分钟前
生姜完成签到 ,获得积分10
2分钟前
3分钟前
moroa完成签到,获得积分10
3分钟前
科目三应助clairevox采纳,获得10
3分钟前
zyj完成签到,获得积分10
3分钟前
zyj发布了新的文献求助20
3分钟前
4分钟前
Benhnhk21完成签到,获得积分10
4分钟前
5分钟前
子蓼完成签到 ,获得积分10
5分钟前
zzyh307完成签到 ,获得积分0
6分钟前
牛八先生完成签到,获得积分10
6分钟前
6分钟前
天天快乐应助fhznuli采纳,获得10
6分钟前
6分钟前
fhznuli发布了新的文献求助10
6分钟前
7分钟前
fhznuli完成签到,获得积分10
7分钟前
7分钟前
领导范儿应助科研通管家采纳,获得10
8分钟前
Lucas应助sqlms采纳,获得10
9分钟前
9分钟前
sqlms发布了新的文献求助10
9分钟前
9分钟前
Krim完成签到 ,获得积分10
9分钟前
桐桐应助方沅采纳,获得10
9分钟前
10分钟前
yao发布了新的文献求助10
10分钟前
10分钟前
情怀应助yao采纳,获得10
10分钟前
Orange应助科研通管家采纳,获得10
11分钟前
11分钟前
11分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303289
求助须知:如何正确求助?哪些是违规求助? 2937611
关于积分的说明 8482551
捐赠科研通 2611482
什么是DOI,文献DOI怎么找? 1425957
科研通“疑难数据库(出版商)”最低求助积分说明 662494
邀请新用户注册赠送积分活动 647005