Decoupling and Integration Network for Camouflaged Object Detection

计算机科学 解耦(概率) 对象(语法) 人工智能 目标检测 计算机安全 模式识别(心理学) 工程类 控制工程
作者
Xiaofei Zhou,Zhicong Wu,Runmin Cong
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 7114-7129 被引量:85
标识
DOI:10.1109/tmm.2024.3360710
摘要

Recently, camouflaged object detection (COD), which suffers from numerous challenges such as low contrast between camouflaged objects and background and large variations of camouflaged object appearances, has received more and more concerns. However, the performance of existing camouflaged object detection methods is still unsatisfactory, especially when dealing with complex scenes. Therefore, in this paper, we propose a novel Decoupling and Integration Network (DINet) to detect camouflaged objects. Here, the depiction of camouflaged objects can be regarded as the iterative decoupling and integration of the body features and detail features, where the former focuses on the center of camouflaged objects and the latter contains pixels around edges. Concretely, firstly, we deploy two complementary decoder branches including a detail branch and a body branch to learn the decoupling features, namely body decoder features and detail decoder features. Particularly, each decoder block of the two branches incorporates features from three components, i.e. , the previous interactive feature fusion (IFF) module, adjacent encoder layers, and corresponding encoder layer. Besides, to further elevate the body decoder features, the body blocks also introduce the global contextual information, which is the combination of all body encoder features via the global context (GC) unit, to provide coarse object location information. Secondly, to integrate the two decoupling decoder features, we deploy the interactive feature fusion (IFF) module based on the interactive combination and channel attention. Following this way, we can progressively provide a complete and accurate representation for camouflaged objects. Extensive experiments on three public challenging datasets, including CAMO, COD10K, and NC4K, show that our DINet presents competitive performance when compared with the state-of-the-art models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CYQ完成签到 ,获得积分10
1秒前
1秒前
听风完成签到 ,获得积分10
1秒前
鹤鹤有名发布了新的文献求助10
2秒前
我是老大应助eve采纳,获得10
3秒前
FMQ发布了新的文献求助10
3秒前
聪明灭绝完成签到 ,获得积分10
4秒前
caimeng发布了新的文献求助10
4秒前
5秒前
海上森林的一只猫完成签到 ,获得积分10
9秒前
研友_LX66qZ完成签到,获得积分10
9秒前
caimeng完成签到,获得积分10
10秒前
11秒前
13秒前
shark00发布了新的文献求助10
15秒前
16秒前
肖肖完成签到,获得积分10
17秒前
幽默赛君完成签到 ,获得积分10
17秒前
19秒前
慕青应助黯黑の夜采纳,获得10
19秒前
1212发布了新的文献求助10
19秒前
20秒前
20秒前
肖肖发布了新的文献求助30
20秒前
万万完成签到 ,获得积分10
21秒前
22秒前
24秒前
25秒前
zlk发布了新的文献求助10
25秒前
Slkled发布了新的文献求助10
25秒前
25秒前
wrzzz完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
28秒前
丰富之槐完成签到,获得积分10
29秒前
ReRe33完成签到 ,获得积分10
29秒前
游子轩应助九思采纳,获得10
29秒前
yb完成签到 ,获得积分10
29秒前
科研通AI6.1应助Chemisboy采纳,获得10
30秒前
Jasper应助jing采纳,获得30
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742086
求助须知:如何正确求助?哪些是违规求助? 5405647
关于积分的说明 15343886
捐赠科研通 4883555
什么是DOI,文献DOI怎么找? 2625085
邀请新用户注册赠送积分活动 1573951
关于科研通互助平台的介绍 1530896