Decoupling and Integration Network for Camouflaged Object Detection

计算机科学 解耦(概率) 对象(语法) 人工智能 目标检测 计算机安全 模式识别(心理学) 工程类 控制工程
作者
Xiaofei Zhou,Zhicong Wu,Runmin Cong
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 7114-7129 被引量:17
标识
DOI:10.1109/tmm.2024.3360710
摘要

Recently, camouflaged object detection (COD), which suffers from numerous challenges such as low contrast between camouflaged objects and background and large variations of camouflaged object appearances, has received more and more concerns. However, the performance of existing camouflaged object detection methods is still unsatisfactory, especially when dealing with complex scenes. Therefore, in this paper, we propose a novel Decoupling and Integration Network (DINet) to detect camouflaged objects. Here, the depiction of camouflaged objects can be regarded as the iterative decoupling and integration of the body features and detail features, where the former focuses on the center of camouflaged objects and the latter contains pixels around edges. Concretely, firstly, we deploy two complementary decoder branches including a detail branch and a body branch to learn the decoupling features, namely body decoder features and detail decoder features. Particularly, each decoder block of the two branches incorporates features from three components, i.e. , the previous interactive feature fusion (IFF) module, adjacent encoder layers, and corresponding encoder layer. Besides, to further elevate the body decoder features, the body blocks also introduce the global contextual information, which is the combination of all body encoder features via the global context (GC) unit, to provide coarse object location information. Secondly, to integrate the two decoupling decoder features, we deploy the interactive feature fusion (IFF) module based on the interactive combination and channel attention. Following this way, we can progressively provide a complete and accurate representation for camouflaged objects. Extensive experiments on three public challenging datasets, including CAMO, COD10K, and NC4K, show that our DINet presents competitive performance when compared with the state-of-the-art models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜欢皮卡丘的贾同学完成签到,获得积分10
1秒前
文汉完成签到,获得积分20
1秒前
壮观以松发布了新的文献求助10
2秒前
2秒前
Apriloooo完成签到,获得积分10
3秒前
xjp发布了新的文献求助10
3秒前
sgt发布了新的文献求助10
3秒前
3秒前
3秒前
蛋黄派完成签到,获得积分10
4秒前
慕青应助阿敬采纳,获得30
4秒前
Owen应助疯狂的虔采纳,获得10
4秒前
JudgeGoodwin完成签到,获得积分10
4秒前
烟花应助mermer采纳,获得10
5秒前
爆米花应助zzzx采纳,获得10
5秒前
5秒前
7秒前
adelalady完成签到,获得积分10
8秒前
Noneone110发布了新的文献求助10
8秒前
8秒前
桐桐应助Sg采纳,获得10
8秒前
Wiggins完成签到,获得积分10
9秒前
研友_VZG7GZ应助cc采纳,获得10
9秒前
9秒前
9秒前
无限早晨完成签到,获得积分10
9秒前
大力依珊发布了新的文献求助30
9秒前
10秒前
10秒前
sgt完成签到,获得积分10
10秒前
剑指东方是为谁应助PXX采纳,获得10
10秒前
yuan发布了新的文献求助10
10秒前
CodeCraft应助无奈的晴采纳,获得10
10秒前
11秒前
kk发布了新的文献求助10
11秒前
1561giou发布了新的文献求助10
12秒前
专注大门完成签到,获得积分10
12秒前
小太阳发布了新的文献求助10
12秒前
火星上云朵完成签到 ,获得积分10
13秒前
天天快乐应助刘明采纳,获得10
13秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
Not Equal : Towards an International Law of Finance 260
Oribatid mites in Burmese amber I. First record of the family Achipteriidae (Acariformes, Oribatida) in Cretaceous amber, with the description of a new species of Cerachipteria Grandjean, 1935 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725848
求助须知:如何正确求助?哪些是违规求助? 3270880
关于积分的说明 9969512
捐赠科研通 2986307
什么是DOI,文献DOI怎么找? 1638161
邀请新用户注册赠送积分活动 777987
科研通“疑难数据库(出版商)”最低求助积分说明 747365