已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Decoupling and Integration Network for Camouflaged Object Detection

计算机科学 解耦(概率) 对象(语法) 人工智能 目标检测 计算机安全 模式识别(心理学) 工程类 控制工程
作者
Xiaofei Zhou,Zhicong Wu,Runmin Cong
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 7114-7129 被引量:49
标识
DOI:10.1109/tmm.2024.3360710
摘要

Recently, camouflaged object detection (COD), which suffers from numerous challenges such as low contrast between camouflaged objects and background and large variations of camouflaged object appearances, has received more and more concerns. However, the performance of existing camouflaged object detection methods is still unsatisfactory, especially when dealing with complex scenes. Therefore, in this paper, we propose a novel Decoupling and Integration Network (DINet) to detect camouflaged objects. Here, the depiction of camouflaged objects can be regarded as the iterative decoupling and integration of the body features and detail features, where the former focuses on the center of camouflaged objects and the latter contains pixels around edges. Concretely, firstly, we deploy two complementary decoder branches including a detail branch and a body branch to learn the decoupling features, namely body decoder features and detail decoder features. Particularly, each decoder block of the two branches incorporates features from three components, i.e. , the previous interactive feature fusion (IFF) module, adjacent encoder layers, and corresponding encoder layer. Besides, to further elevate the body decoder features, the body blocks also introduce the global contextual information, which is the combination of all body encoder features via the global context (GC) unit, to provide coarse object location information. Secondly, to integrate the two decoupling decoder features, we deploy the interactive feature fusion (IFF) module based on the interactive combination and channel attention. Following this way, we can progressively provide a complete and accurate representation for camouflaged objects. Extensive experiments on three public challenging datasets, including CAMO, COD10K, and NC4K, show that our DINet presents competitive performance when compared with the state-of-the-art models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
走走发布了新的文献求助10
1秒前
鱼鱼鱼完成签到,获得积分10
5秒前
6秒前
斯文败类应助RR采纳,获得10
7秒前
8秒前
9秒前
朱柏松发布了新的文献求助10
10秒前
future完成签到 ,获得积分10
10秒前
呵呵心情发布了新的文献求助10
11秒前
11秒前
科研通AI5应助yuan采纳,获得30
14秒前
开放的从菡完成签到 ,获得积分10
14秒前
川2002发布了新的文献求助10
15秒前
xiao完成签到 ,获得积分10
16秒前
liuwenjie发布了新的文献求助10
17秒前
tomorrow完成签到 ,获得积分10
18秒前
19秒前
19秒前
英俊的铭应助朱柏松采纳,获得10
20秒前
20秒前
迷路凌柏完成签到 ,获得积分10
21秒前
黎明森发布了新的文献求助10
22秒前
23秒前
wsx发布了新的文献求助10
24秒前
大个应助陈1采纳,获得10
25秒前
丘比特应助xxf采纳,获得10
25秒前
星魂发布了新的文献求助10
25秒前
26秒前
27秒前
NLJY完成签到,获得积分10
29秒前
31秒前
yuan给yuan的求助进行了留言
31秒前
32秒前
朱诗佳发布了新的文献求助10
33秒前
33秒前
35秒前
lilili发布了新的文献求助10
36秒前
飞逝的快乐时光完成签到 ,获得积分10
37秒前
文丽完成签到,获得积分10
37秒前
帅气的安柏应助Sssun17采纳,获得30
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252897
求助须知:如何正确求助?哪些是违规求助? 4416496
关于积分的说明 13749852
捐赠科研通 4288649
什么是DOI,文献DOI怎么找? 2353022
邀请新用户注册赠送积分活动 1349787
关于科研通互助平台的介绍 1309434