Decoupling and Integration Network for Camouflaged Object Detection

计算机科学 解耦(概率) 对象(语法) 人工智能 目标检测 计算机安全 模式识别(心理学) 工程类 控制工程
作者
Xiaofei Zhou,Zhicong Wu,Runmin Cong
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 7114-7129 被引量:85
标识
DOI:10.1109/tmm.2024.3360710
摘要

Recently, camouflaged object detection (COD), which suffers from numerous challenges such as low contrast between camouflaged objects and background and large variations of camouflaged object appearances, has received more and more concerns. However, the performance of existing camouflaged object detection methods is still unsatisfactory, especially when dealing with complex scenes. Therefore, in this paper, we propose a novel Decoupling and Integration Network (DINet) to detect camouflaged objects. Here, the depiction of camouflaged objects can be regarded as the iterative decoupling and integration of the body features and detail features, where the former focuses on the center of camouflaged objects and the latter contains pixels around edges. Concretely, firstly, we deploy two complementary decoder branches including a detail branch and a body branch to learn the decoupling features, namely body decoder features and detail decoder features. Particularly, each decoder block of the two branches incorporates features from three components, i.e. , the previous interactive feature fusion (IFF) module, adjacent encoder layers, and corresponding encoder layer. Besides, to further elevate the body decoder features, the body blocks also introduce the global contextual information, which is the combination of all body encoder features via the global context (GC) unit, to provide coarse object location information. Secondly, to integrate the two decoupling decoder features, we deploy the interactive feature fusion (IFF) module based on the interactive combination and channel attention. Following this way, we can progressively provide a complete and accurate representation for camouflaged objects. Extensive experiments on three public challenging datasets, including CAMO, COD10K, and NC4K, show that our DINet presents competitive performance when compared with the state-of-the-art models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
3秒前
Cheny发布了新的文献求助10
4秒前
eli完成签到,获得积分0
5秒前
桐桐应助Zox采纳,获得10
5秒前
贝博发布了新的文献求助10
6秒前
zhao完成签到,获得积分10
6秒前
彩色的乐驹完成签到 ,获得积分10
6秒前
rainbow完成签到,获得积分10
8秒前
ccm应助kevimfr采纳,获得10
8秒前
晚风完成签到,获得积分10
9秒前
10秒前
10秒前
白凝完成签到 ,获得积分10
12秒前
12秒前
lrsabrina发布了新的文献求助10
12秒前
13秒前
爱咋咋地发布了新的文献求助10
13秒前
心行完成签到,获得积分20
13秒前
minrui发布了新的文献求助10
14秒前
贺四洋发布了新的文献求助10
14秒前
碧蓝青梦发布了新的文献求助10
16秒前
科研通AI2S应助Cheny采纳,获得10
18秒前
一只西瓜茶完成签到,获得积分10
19秒前
19秒前
20秒前
共享精神应助kevimfr采纳,获得10
21秒前
22秒前
务实豪完成签到,获得积分20
24秒前
在水一方应助碧蓝青梦采纳,获得10
24秒前
lrsabrina完成签到,获得积分20
25秒前
SciGPT应助心行采纳,获得10
25秒前
ChuangyangLi发布了新的文献求助10
26秒前
28秒前
乐乐应助Foalphaz采纳,获得10
29秒前
29秒前
Artist完成签到 ,获得积分10
30秒前
zh_li完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565868
求助须知:如何正确求助?哪些是违规求助? 4650808
关于积分的说明 14693385
捐赠科研通 4592912
什么是DOI,文献DOI怎么找? 2519798
邀请新用户注册赠送积分活动 1492175
关于科研通互助平台的介绍 1463329