Decoupling and Integration Network for Camouflaged Object Detection

计算机科学 解耦(概率) 对象(语法) 人工智能 目标检测 计算机安全 模式识别(心理学) 工程类 控制工程
作者
Xiaofei Zhou,Zhicong Wu,Runmin Cong
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 7114-7129 被引量:85
标识
DOI:10.1109/tmm.2024.3360710
摘要

Recently, camouflaged object detection (COD), which suffers from numerous challenges such as low contrast between camouflaged objects and background and large variations of camouflaged object appearances, has received more and more concerns. However, the performance of existing camouflaged object detection methods is still unsatisfactory, especially when dealing with complex scenes. Therefore, in this paper, we propose a novel Decoupling and Integration Network (DINet) to detect camouflaged objects. Here, the depiction of camouflaged objects can be regarded as the iterative decoupling and integration of the body features and detail features, where the former focuses on the center of camouflaged objects and the latter contains pixels around edges. Concretely, firstly, we deploy two complementary decoder branches including a detail branch and a body branch to learn the decoupling features, namely body decoder features and detail decoder features. Particularly, each decoder block of the two branches incorporates features from three components, i.e. , the previous interactive feature fusion (IFF) module, adjacent encoder layers, and corresponding encoder layer. Besides, to further elevate the body decoder features, the body blocks also introduce the global contextual information, which is the combination of all body encoder features via the global context (GC) unit, to provide coarse object location information. Secondly, to integrate the two decoupling decoder features, we deploy the interactive feature fusion (IFF) module based on the interactive combination and channel attention. Following this way, we can progressively provide a complete and accurate representation for camouflaged objects. Extensive experiments on three public challenging datasets, including CAMO, COD10K, and NC4K, show that our DINet presents competitive performance when compared with the state-of-the-art models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谓易ing完成签到 ,获得积分10
1秒前
田様应助charlie采纳,获得10
1秒前
小兰花发布了新的文献求助10
1秒前
天天快乐应助磊磊猪采纳,获得10
1秒前
风吹而过发布了新的文献求助10
2秒前
123456hhh发布了新的文献求助30
3秒前
雨安发布了新的文献求助10
4秒前
yexing完成签到,获得积分10
4秒前
赵君仪完成签到,获得积分10
4秒前
田様应助泯然采纳,获得10
5秒前
jinxin发布了新的文献求助10
6秒前
hy完成签到,获得积分10
6秒前
希望天下0贩的0应助yy采纳,获得10
6秒前
陈梓锋完成签到 ,获得积分10
6秒前
8秒前
Akim应助李峻宇采纳,获得80
8秒前
YouY0123完成签到,获得积分10
9秒前
kong完成签到 ,获得积分10
9秒前
qinzx发布了新的文献求助10
10秒前
Akim应助WWW采纳,获得10
11秒前
王君青见完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
14秒前
15秒前
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
科研通AI2S应助wzx采纳,获得10
17秒前
BowieHuang应助李子愚采纳,获得10
17秒前
小谢发布了新的文献求助10
17秒前
肚皮完成签到 ,获得积分0
18秒前
斌斌完成签到,获得积分10
18秒前
汉堡包应助vv采纳,获得10
18秒前
18秒前
科研通AI6.1应助成太采纳,获得10
19秒前
迷途灯光发布了新的文献求助10
19秒前
幻竹发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5793595
求助须知:如何正确求助?哪些是违规求助? 5750649
关于积分的说明 15486388
捐赠科研通 4920552
什么是DOI,文献DOI怎么找? 2648996
邀请新用户注册赠送积分活动 1596327
关于科研通互助平台的介绍 1550885