A review of distributed acoustic sensing applications for railroad condition monitoring

结构健康监测 多样性(控制论) 计算机科学 航程(航空) 信号处理 实时计算 数据挖掘 工程类 人工智能 电信 雷达 结构工程 航空航天工程
作者
Md Arifur Rahman,Hossein Taheri,Fadwa Dababneh,Sasan Sattarpanah Karganroudi,Seyyedabbas Arhamnamazi
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:208: 110983-110983 被引量:13
标识
DOI:10.1016/j.ymssp.2023.110983
摘要

Accurate condition monitoring has been a major challenge among railroad management authorities as they work to minimize collisions that lead to fatalities or damage to railroads infrastructure. Hence, research and technological developments in railroad maintenance and inspection are vital. Several research studies, on the inspection and defect detection techniques for railroads have been conducted by scholars. Despite the significant advancements made in this area, extensive studies are still required to enhance the accuracy of prognostic methods for railroad structural health monitoring (SHM) and condition monitoring (CM). Distributed acoustic sensing (DAS) has been recognized as a promising measurement method because of its quick sensing capabilities over long distances and for massive structures. DAS systems are classified according to the optical sensing quality and sensing range. As DAS produces large noisy datasets, in the case of railroad applications, algorithms for precise real-time and reliable analysis are essential. Meanwhile, data-driven and machine learning (ML) methods for defect detection have emerged as valuable approaches for SHM. Engineers and stakeholders can use ML algorithms to examine the large volumes of data produced by SHM systems to identify patterns and behaviors that might not appear in manual inspections. To support more precise and accurate maintenance and inspection for railroad systems, methodologies used to detect, identify, and characterize abnormal conditions in railroads using DAS and signal processing approaches for DAS large size and noisy signals, must be reviewed. Accordingly, in this literature survey, the applications of DAS methods for railroad CM are investigated. Among the variety of DAS methods, optical time domain reflectometry (OTDR) is reviewed in more details, since it is the most common approach in distributed fiber optic sensing. In addition, different OTDR-based DAS research for train tracking and railroad SHM are reviewed, and a comprehensive summary of different railroad defects is provided for further investigation. In all, this review paper provides a comprehensive background on distributed fiber optic sensing, the importance and challenges in railroad continuous CM, and the state-of-the-art application and future roadmap for the application of DAS in the railroad industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英勇诗槐发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
雪儿完成签到,获得积分10
1秒前
紫色方块发布了新的文献求助10
2秒前
2秒前
华仔应助黑天鹅采纳,获得10
2秒前
2秒前
子车茗应助怕孤单的sky采纳,获得30
2秒前
喃义完成签到,获得积分20
2秒前
巨炮叔叔完成签到,获得积分10
2秒前
tramp发布了新的文献求助10
2秒前
3秒前
伯赏元彤发布了新的文献求助10
3秒前
打打应助顺利的奇异果采纳,获得10
4秒前
laser发布了新的文献求助30
4秒前
风中以菱发布了新的文献求助10
4秒前
wang完成签到,获得积分10
5秒前
对照完成签到 ,获得积分10
5秒前
李梦琦发布了新的文献求助10
5秒前
同尘完成签到,获得积分10
5秒前
5秒前
王嘿嘿发布了新的文献求助10
6秒前
6秒前
waayu发布了新的文献求助10
7秒前
Owen应助cqy采纳,获得10
7秒前
搜集达人应助nico采纳,获得10
8秒前
bhkwxdxy完成签到,获得积分10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
星辰坠于海应助Ki_Ayasato采纳,获得100
8秒前
hhllhh啊完成签到 ,获得积分10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
pluto应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
山黛Liebe应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3456568
求助须知:如何正确求助?哪些是违规求助? 3051799
关于积分的说明 9027982
捐赠科研通 2740435
什么是DOI,文献DOI怎么找? 1503318
科研通“疑难数据库(出版商)”最低求助积分说明 694780
邀请新用户注册赠送积分活动 693752