Meta-learning with elastic prototypical network for fault transfer diagnosis of bearings under unstable speeds

断层(地质) 背景(考古学) 振动 编码器 方位(导航) 频域 计算机科学 特征(语言学) 人工智能 控制理论(社会学) 地质学 计算机视觉 地震学 声学 哲学 古生物学 物理 操作系统 生物 语言学 控制(管理)
作者
Jingjie Luo,Haidong Shao,Jian Lin,Bin Liu
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:245: 110001-110001 被引量:96
标识
DOI:10.1016/j.ress.2024.110001
摘要

Existing studies on meta-learning based few-shot fault diagnosis largely focus on constant speed scenarios, neglecting the consideration of more realistic scenarios involving unstable speeds. In addition, effective measures are highly required to address the complexity of signals in the feature encoding stage and the classification of encoded points. To address these issues, this study proposes a meta-learning approach utilizing an elastic prototypical network (EProtoNet) for few-shot fault transfer diagnosis in scenarios characterized by unstable speeds that better approximate real-world conditions. Firstly, a reinforced feature encoder is devised, incorporating a squeeze and excitation attention mechanism, which enables a deeper exploration of effective features within complex signals encountered during unstable speeds. Secondly, an elastic measurer is introduced, featuring an elastic factor that offers more flexible discrimination between different fault classes. The proposed method is applied to analyze rolling bearing vibration signals with speed fluctuations. Comparative evaluation against existing methods demonstrates that the proposed approach exhibits higher accuracy, reduced result volatility, faster testing speed across various scenarios, and greater suitability for cross-domain few-shot fault diagnosis in the context of unstable speeds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tata应助斯文懿轩采纳,获得10
1秒前
华仔应助喜悦念柏采纳,获得20
2秒前
4秒前
4秒前
耶稣与梦完成签到,获得积分10
4秒前
紫色哀伤发布了新的文献求助10
4秒前
bingsu108完成签到,获得积分10
5秒前
6秒前
浮游应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
Iris发布了新的文献求助40
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
7秒前
风清扬应助科研通管家采纳,获得30
7秒前
复杂荟发布了新的文献求助10
7秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
7秒前
Ava应助科研通管家采纳,获得10
7秒前
澈千子发布了新的文献求助10
8秒前
浮游应助安心采纳,获得10
10秒前
丹曦完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
浮游应助舒心的芝麻采纳,获得10
13秒前
田国兵发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
Nancy完成签到 ,获得积分10
14秒前
莎莎士比亚完成签到,获得积分10
14秒前
hjjjjj1发布了新的文献求助10
14秒前
vlots应助zdb采纳,获得30
14秒前
14秒前
keyring完成签到 ,获得积分10
15秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601983
求助须知:如何正确求助?哪些是违规求助? 4011438
关于积分的说明 12419208
捐赠科研通 3691523
什么是DOI,文献DOI怎么找? 2035123
邀请新用户注册赠送积分活动 1068423
科研通“疑难数据库(出版商)”最低求助积分说明 952869