Finite element modeling in heat and mass transfer of potato slice dehydration, nonisotropic shrinkage kinetics using arbitrary Lagrangian–Eulerian algorithm and artificial neural network

收缩率 脱水 有限元法 欧拉路径 传质 动力学 人工神经网络 拉格朗日 机械 生物系统 算法 物理 计算机科学 热力学 材料科学 数学 应用数学 化学 经典力学 人工智能 复合材料 生物 生物化学
作者
Rahul Das,K. Prasad
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:47 (2) 被引量:2
标识
DOI:10.1111/jfpe.14545
摘要

Abstract The present study optimized the drying temperature (50–80°C) for potato slices based on color, texture, and visual observations. At an optimized temperature (60°C), a 2D axisymmetric finite element method (FEM) was developed in COMSOL Multiphysics to predict the heat and mass transfer (HMT) in a disk‐shaped potato slice. The nonisotropic shrinkage was predicted for the potato slice by the arbitrary Lagrangian–Eulerian approach. The experimental dehydration results revealed that axial shrinkage (27.44%) was 2.5 times higher than radial shrinkage (67.39%). The simulated outcomes based on FEM revealed the realistic visualization of spatial heat transfer, moisture migration, and nonisotropic slice deformation. The predicted moisture content, surface temperature, and shrinkage properties were in good agreement with the experimental results. The shrinkage behavior was further validated using artificial neural network (ANN) to simulate the slice shrinkage. Results showed that both the COMSOL and ANN approaches can precisely predict the shrinkage‐dependent HMT model. The ANN model outperformed the COMSOL determined by mean absolute error, mean square error (MSE), root MSE, and Chi‐square (χ 2 ) values. The successful application of the presented approach for determining dehydration characteristics may have potential for quality assessment and management of different fruits and vegetables. Practical applications This journal article explores the practical industrial applications of combining finite element method (FEM)‐based heat and mass transfer model and artificial neural networks (ANNs) to improve the efficiency and quality of food drying processes. FEM is employed to simulate and predict the realistic visualization of heat and mass transfer phenomena along with non‐isotropic shrinkage, while ANN serves as a data‐driven modeling tool for process control and prediction. The integration of these two technologies offers significant advantages in the food industry, including quantification of precise temperature and moisture content, as well as to monitor the drying process of various food products, reduced energy consumption, and time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴素亦云完成签到 ,获得积分10
1秒前
善学以致用应助苗苗采纳,获得10
2秒前
qiluo123完成签到,获得积分10
3秒前
慧海拾穗完成签到 ,获得积分10
4秒前
如果多年后完成签到 ,获得积分10
10秒前
orixero应助YaoX采纳,获得10
11秒前
Keming完成签到,获得积分10
12秒前
haishixigua完成签到,获得积分10
14秒前
Hayat应助Lq采纳,获得10
15秒前
明亮的青旋完成签到 ,获得积分10
15秒前
爆米花应助慈祥的翠桃采纳,获得10
15秒前
烟花应助慈祥的翠桃采纳,获得10
16秒前
天天快乐应助慈祥的翠桃采纳,获得10
16秒前
香蕉觅云应助慈祥的翠桃采纳,获得10
16秒前
汉堡包应助慈祥的翠桃采纳,获得10
16秒前
小马甲应助慈祥的翠桃采纳,获得10
16秒前
在水一方应助慈祥的翠桃采纳,获得10
16秒前
所所应助慈祥的翠桃采纳,获得10
16秒前
充电宝应助慈祥的翠桃采纳,获得10
16秒前
传奇3应助慈祥的翠桃采纳,获得10
16秒前
xixihaha完成签到,获得积分10
17秒前
17秒前
彳亍完成签到 ,获得积分10
18秒前
炙热的昊强完成签到 ,获得积分10
18秒前
19秒前
19秒前
怕孤单的安蕾完成签到,获得积分10
21秒前
桃子同学完成签到,获得积分10
23秒前
谭显芝发布了新的文献求助10
23秒前
YaoX发布了新的文献求助10
25秒前
25秒前
26秒前
心灵美复天完成签到,获得积分10
26秒前
weiboo发布了新的文献求助10
27秒前
共享精神应助彩虹糖采纳,获得10
27秒前
hugo发布了新的文献求助20
27秒前
27秒前
smm完成签到 ,获得积分10
27秒前
yinhe完成签到 ,获得积分10
28秒前
JIASHOUSHOU完成签到,获得积分10
29秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242078
求助须知:如何正确求助?哪些是违规求助? 2886427
关于积分的说明 8243321
捐赠科研通 2555030
什么是DOI,文献DOI怎么找? 1383201
科研通“疑难数据库(出版商)”最低求助积分说明 649672
邀请新用户注册赠送积分活动 625417