亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Finite element modeling in heat and mass transfer of potato slice dehydration, nonisotropic shrinkage kinetics using arbitrary Lagrangian–Eulerian algorithm and artificial neural network

收缩率 脱水 有限元法 欧拉路径 传质 动力学 人工神经网络 拉格朗日 机械 生物系统 算法 物理 计算机科学 热力学 材料科学 数学 应用数学 化学 经典力学 人工智能 复合材料 生物 生物化学
作者
Rahul Das,K. Prasad
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:47 (2) 被引量:2
标识
DOI:10.1111/jfpe.14545
摘要

Abstract The present study optimized the drying temperature (50–80°C) for potato slices based on color, texture, and visual observations. At an optimized temperature (60°C), a 2D axisymmetric finite element method (FEM) was developed in COMSOL Multiphysics to predict the heat and mass transfer (HMT) in a disk‐shaped potato slice. The nonisotropic shrinkage was predicted for the potato slice by the arbitrary Lagrangian–Eulerian approach. The experimental dehydration results revealed that axial shrinkage (27.44%) was 2.5 times higher than radial shrinkage (67.39%). The simulated outcomes based on FEM revealed the realistic visualization of spatial heat transfer, moisture migration, and nonisotropic slice deformation. The predicted moisture content, surface temperature, and shrinkage properties were in good agreement with the experimental results. The shrinkage behavior was further validated using artificial neural network (ANN) to simulate the slice shrinkage. Results showed that both the COMSOL and ANN approaches can precisely predict the shrinkage‐dependent HMT model. The ANN model outperformed the COMSOL determined by mean absolute error, mean square error (MSE), root MSE, and Chi‐square (χ 2 ) values. The successful application of the presented approach for determining dehydration characteristics may have potential for quality assessment and management of different fruits and vegetables. Practical applications This journal article explores the practical industrial applications of combining finite element method (FEM)‐based heat and mass transfer model and artificial neural networks (ANNs) to improve the efficiency and quality of food drying processes. FEM is employed to simulate and predict the realistic visualization of heat and mass transfer phenomena along with non‐isotropic shrinkage, while ANN serves as a data‐driven modeling tool for process control and prediction. The integration of these two technologies offers significant advantages in the food industry, including quantification of precise temperature and moisture content, as well as to monitor the drying process of various food products, reduced energy consumption, and time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
reds发布了新的文献求助10
4秒前
17秒前
鹏笑发布了新的文献求助10
20秒前
aDD关注了科研通微信公众号
23秒前
31秒前
鹏笑完成签到,获得积分10
31秒前
小时了了发布了新的文献求助10
36秒前
赵佳铃发布了新的文献求助10
37秒前
深情安青应助宗友绿采纳,获得10
37秒前
40秒前
43秒前
aDD发布了新的文献求助10
45秒前
宗友绿发布了新的文献求助10
48秒前
赵佳铃完成签到,获得积分10
54秒前
小二郎应助宗友绿采纳,获得10
1分钟前
1分钟前
传奇3应助宗友绿采纳,获得10
1分钟前
活泼稀发布了新的文献求助10
1分钟前
香蕉新儿完成签到,获得积分10
1分钟前
雪梨101完成签到,获得积分10
1分钟前
1分钟前
笨笨完成签到,获得积分10
1分钟前
雪梨101发布了新的文献求助10
1分钟前
PDE完成签到,获得积分10
1分钟前
1分钟前
gszy1975完成签到,获得积分10
1分钟前
1分钟前
江姜酱先生完成签到,获得积分10
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
科研通AI6应助雪梨101采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
实干的多春鱼完成签到,获得积分10
1分钟前
宗友绿发布了新的文献求助10
1分钟前
活泼稀完成签到,获得积分10
1分钟前
1分钟前
岁岁几祈愿完成签到 ,获得积分10
2分钟前
宗友绿发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253853
求助须知:如何正确求助?哪些是违规求助? 4417068
关于积分的说明 13750902
捐赠科研通 4289590
什么是DOI,文献DOI怎么找? 2353566
邀请新用户注册赠送积分活动 1350271
关于科研通互助平台的介绍 1310288