Finite element modeling in heat and mass transfer of potato slice dehydration, nonisotropic shrinkage kinetics using arbitrary Lagrangian–Eulerian algorithm and artificial neural network

收缩率 脱水 有限元法 欧拉路径 传质 动力学 人工神经网络 拉格朗日 机械 生物系统 算法 物理 计算机科学 热力学 材料科学 数学 应用数学 化学 经典力学 人工智能 复合材料 生物 生物化学
作者
Rahul Das,K. Prasad
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:47 (2) 被引量:2
标识
DOI:10.1111/jfpe.14545
摘要

Abstract The present study optimized the drying temperature (50–80°C) for potato slices based on color, texture, and visual observations. At an optimized temperature (60°C), a 2D axisymmetric finite element method (FEM) was developed in COMSOL Multiphysics to predict the heat and mass transfer (HMT) in a disk‐shaped potato slice. The nonisotropic shrinkage was predicted for the potato slice by the arbitrary Lagrangian–Eulerian approach. The experimental dehydration results revealed that axial shrinkage (27.44%) was 2.5 times higher than radial shrinkage (67.39%). The simulated outcomes based on FEM revealed the realistic visualization of spatial heat transfer, moisture migration, and nonisotropic slice deformation. The predicted moisture content, surface temperature, and shrinkage properties were in good agreement with the experimental results. The shrinkage behavior was further validated using artificial neural network (ANN) to simulate the slice shrinkage. Results showed that both the COMSOL and ANN approaches can precisely predict the shrinkage‐dependent HMT model. The ANN model outperformed the COMSOL determined by mean absolute error, mean square error (MSE), root MSE, and Chi‐square (χ 2 ) values. The successful application of the presented approach for determining dehydration characteristics may have potential for quality assessment and management of different fruits and vegetables. Practical applications This journal article explores the practical industrial applications of combining finite element method (FEM)‐based heat and mass transfer model and artificial neural networks (ANNs) to improve the efficiency and quality of food drying processes. FEM is employed to simulate and predict the realistic visualization of heat and mass transfer phenomena along with non‐isotropic shrinkage, while ANN serves as a data‐driven modeling tool for process control and prediction. The integration of these two technologies offers significant advantages in the food industry, including quantification of precise temperature and moisture content, as well as to monitor the drying process of various food products, reduced energy consumption, and time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
充电宝应助李胜采纳,获得10
3秒前
NEKO33完成签到,获得积分20
4秒前
6秒前
娟娟发布了新的文献求助10
6秒前
酷波er应助yuan466125789采纳,获得10
10秒前
11秒前
上官若男应助娟娟采纳,获得10
16秒前
wanci应助log采纳,获得10
18秒前
悄悄是心上的肖肖完成签到 ,获得积分10
19秒前
隐形曼青应助迷路芝麻采纳,获得10
21秒前
LAVINE完成签到 ,获得积分10
22秒前
asdf应助科研鸟采纳,获得10
23秒前
冷酷青椒完成签到,获得积分10
24秒前
娟娟完成签到,获得积分20
27秒前
28秒前
朴实傲霜发布了新的文献求助10
28秒前
baolong完成签到,获得积分10
30秒前
32秒前
王博士发布了新的文献求助10
35秒前
善良又夏发布了新的文献求助10
36秒前
星辰大海应助科研通管家采纳,获得30
38秒前
CodeCraft应助科研通管家采纳,获得10
38秒前
Hello应助愉快的芒果采纳,获得10
38秒前
完美世界应助科研通管家采纳,获得10
38秒前
lll应助科研通管家采纳,获得10
38秒前
38秒前
星辰大海应助科研通管家采纳,获得10
38秒前
38秒前
38秒前
38秒前
38秒前
39秒前
王博士完成签到,获得积分20
42秒前
朴实傲霜完成签到,获得积分10
43秒前
蓝桉发布了新的文献求助30
43秒前
上官若男应助Aria采纳,获得10
45秒前
农夫果园完成签到,获得积分10
46秒前
牛牛眉目发布了新的文献求助10
49秒前
李博士完成签到,获得积分20
52秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966324
求助须知:如何正确求助?哪些是违规求助? 3511753
关于积分的说明 11159467
捐赠科研通 3246341
什么是DOI,文献DOI怎么找? 1793389
邀请新用户注册赠送积分活动 874417
科研通“疑难数据库(出版商)”最低求助积分说明 804357