Wind turbine generator early fault diagnosis using LSTM-based stacked denoising autoencoder network and stacking algorithm

涡轮机 断层(地质) 风力发电 发电机(电路理论) 阿达布思 状态监测 堆积 计算机科学 算法 人工智能 支持向量机 模式识别(心理学) 工程类 数据挖掘 功率(物理) 电气工程 地质学 机械工程 物理 核磁共振 量子力学 地震学
作者
Junshuai Yan,Yongqian Liu,Hang Meng,Li Li,Xiaoying Ren
出处
期刊:International Journal of Green Energy [Taylor & Francis]
卷期号:21 (11): 2477-2492 被引量:3
标识
DOI:10.1080/15435075.2024.2315445
摘要

To reduce the significant economic losses caused by the fault deterioration of wind turbine generators, it is urgent to detect and diagnose the early faults of generators. The existing condition monitoring and fault diagnosis (CMFD) methods have disadvantages of less considering data temporal characteristic, acquiring early faults with difficulty, and having lower diagnostic accuracy. To address those limitations, a novel LSDAE-stacking CMFD method of generators was proposed. Specifically, a multivariate spatiotemporal condition monitoring model (LSDAE) was established by combining the LSTM and SDAE networks, which can detect generator early anomalies through real-time monitoring the reconstruction residual. Then, based on the stacking ensemble algorithm, a multi-classification fault diagnosis model (Stacking) was constructed to identify early fault types, which can integrate advantages of different base-classifiers to achieve a better diagnostic accuracy. Case studies on three actual generator failures were employed to validate the effectiveness and accuracy of the proposed LSDAE-stacking method. The results illustrated that, compared with conventional SDAE model, the proposed LSDAE model had higher reconstruction precision and superior early-fault-warning capacities. And compared with traditional algorithms such as SVM, RF, AdaBoost, GBDT and XGBoost, the constructed Stacking model can effectively identify the fault types of generators and had higher diagnostic accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ohnk完成签到,获得积分10
2秒前
李笑发布了新的文献求助10
3秒前
Akim应助ohnk采纳,获得10
4秒前
4秒前
5秒前
陆睿发布了新的文献求助10
6秒前
Hbjja完成签到,获得积分10
6秒前
如梦如画发布了新的文献求助10
8秒前
9秒前
Danboard完成签到,获得积分20
10秒前
11秒前
11秒前
大写的笨完成签到,获得积分10
12秒前
13秒前
YAMO一发布了新的文献求助10
14秒前
15秒前
15秒前
Danboard发布了新的文献求助10
16秒前
hangongyishan完成签到,获得积分10
16秒前
ohnk发布了新的文献求助10
16秒前
kristy完成签到,获得积分10
16秒前
16秒前
Orange应助清秀映秋采纳,获得10
17秒前
大模型应助有一个盆采纳,获得10
18秒前
20秒前
沉默是金完成签到,获得积分10
20秒前
香蕉发布了新的文献求助10
20秒前
尼克11完成签到,获得积分10
22秒前
23秒前
悦耳的芝麻完成签到,获得积分10
24秒前
小蘑菇应助俏皮的白柏采纳,获得10
25秒前
满意平文关注了科研通微信公众号
26秒前
lizhaoyu发布了新的文献求助10
26秒前
wangqianyu发布了新的文献求助10
27秒前
28秒前
29秒前
香蕉完成签到,获得积分10
29秒前
29秒前
小郑发布了新的文献求助10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952646
求助须知:如何正确求助?哪些是违规求助? 3498064
关于积分的说明 11090366
捐赠科研通 3228670
什么是DOI,文献DOI怎么找? 1785032
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801349