阳极
材料科学
环境友好型
焚化
碳纤维
超临界流体
热固性聚合物
废物管理
复合材料
复合数
有机化学
化学
生态学
电极
物理化学
工程类
生物
作者
Young Nam Kim,Younki Lee,Chetna Tewari,Yebom Kim,Sungho Lee,Yong Chae Jung
出处
期刊:Carbon
[Elsevier BV]
日期:2024-02-16
卷期号:221: 118944-118944
被引量:5
标识
DOI:10.1016/j.carbon.2024.118944
摘要
Carbon fiber (CF) is emerging as a high value-added material due to its lightweight nature about 1/4 the weight of steel, coupled with its exceptional strength. In particular, CF reinforced plastic (CFRP), comprising over 60% CF, has gained prominence as a next-generation composite material used in various industries to reduce weight. The widespread use of CFRP has led to a surge in CFRP waste, which arises challenges related to its high cost and waste management, necessitates recycling efforts. However, recycling CFRP is complex because it is composed of thermosetting resins. Conventional recycling methods such as incineration and shredding often result in environmental pollution. Furthermore, during the recycling process, CFs become randomly oriented and primarily repurposed as individual fibers used for reinforcement materials. To address these challenges, our study employs supercritical water for an eco-friendly recycling without the need for catalysts or oxidizers. During this recycling process, we introduced glycine, which simultaneously achieved nitrogen (N) atom doping of the recycled CF. This dual approach resulted in the production of recycled CFs doped with N atoms. This doped and recycled CFs were reused as anode materials for lithium-ion batteries and exhibited a capacity of approximately 340 mAh g−1 (at 0.1C) and a stable cycling lifespan over 150 cycles (at 1C). This promising performance suggests their potential as replacements for traditional graphite anode materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI