A nomogram incorporating treatment data for predicting overall survival in gastroenteropancreatic neuroendocrine tumors: a population-based cohort study

医学 列线图 比例危险模型 入射(几何) 流行病学 肿瘤科 内科学 阶段(地层学) 监测、流行病学和最终结果 神经内分泌肿瘤 单变量 癌症登记处 多元分析 危险系数 多元统计 统计 光学 物理 生物 置信区间 古生物学 数学
作者
Zeng‐Hong Wu,Guochen Shang,Kun Zhang,Weijun Wang,Mengke Fan,Rong Lin
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:110 (4): 2178-2186 被引量:11
标识
DOI:10.1097/js9.0000000000001080
摘要

Background: Over the last few decades, the annual global incidence of gastroenteropancreatic neuroendocrine tumours (GEP-NETs) has steadily increased. Because of the complex and inconsistent treatment of GEP-NETs, the prognosis of patients with GEP-NETs is still difficult to assess. The study aimed to construct and validate the nomograms included treatment data for prediction overall survival (OS) in GEP-NETs patients. Methods: GEP-NETs patients determined from the Surveillance, Epidemiology, and End Results (SEER)-13 registry database (1992–2018) and with additional treatment data from the SEER-18 registry database (1975–2016). In order to select independent prognostic factors that contribute significantly to patient survival and can be included in the nomogram, multivariate Cox regression analysis was performed using the minimum value of Akaike information criterion (AIC) and we analyzed the relationship of variables with OS by calculating hazard ratios (HRs) and 95% CIs. In addition, we also comprehensively compared the nomogram using to predict OS with the current 7th American Joint Committee on Cancer (AJCC) staging system. Results: From 2004 to 2015, a total of 42 662 patients at diagnosis years with GEP-NETs were determined from the SEER database. The results indicated that the increasing incidence of GEP-NETs per year and the highest incidence is in patients aged 50–54. After removing cases lacking adequate clinicopathologic characteristics, the remaining eligible patients ( n =7564) were randomly divided into training (3782 patients) and testing sets (3782 patients). In the univariate analysis, sex, age, race, tumour location, SEER historic stage, pathology type, TNM, stage, surgery, radiation, chemotherapy, and CS tumour size were found to be significantly related to OS. Ultimately, the key factors for predicting OS were determined, involving sex, age, race, tumour location, SEER historic stage, M, N, grade, surgery, radiation, and chemotherapy. For internal validation, the C-index of the nomogram used to estimate OS in the training set was 0.816 (0.804–0.828). For external validation, the concordance index (C-index) of the nomogram used to predict OS was 0.822 (0.812–0.832). In the training and testing sets, our nomogram produced minimum AIC values and C-index of OS compared with AJCC stage. Decision curve analysis (DCA) indicated that the nomogram was better than the AJCC staging system because more clinical net benefits were obtained within a wider threshold probability range. Conclusion: A nomogram combined treatment data may be better discrimination in predicting overall survival than AJCC staging system. The authors highly recommend to use their nomogram to evaluate individual risks based on different clinical features of GEP-NETs, which can improve the diagnosis and treatment outcomes of GEP-NETs patients and improve their quality of life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
Momomo应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
王秋婷发布了新的文献求助10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
大龙哥886应助个性的冰旋采纳,获得10
1秒前
卓哥发布了新的文献求助10
1秒前
2秒前
2秒前
诸孱完成签到,获得积分20
4秒前
4秒前
4秒前
股价发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
7秒前
jasou初一发布了新的文献求助10
8秒前
可爱的函函应助股价采纳,获得10
11秒前
12秒前
蓬荜生辉完成签到,获得积分10
13秒前
浮游应助难过的醉香采纳,获得10
14秒前
金阿林在科研应助王秋婷采纳,获得10
15秒前
躺平的洋仔完成签到,获得积分10
17秒前
18秒前
大眼的平松完成签到,获得积分10
18秒前
结实的惊蛰完成签到,获得积分20
20秒前
cytheria完成签到 ,获得积分10
20秒前
hanwanting发布了新的文献求助10
23秒前
23秒前
28秒前
希望天下0贩的0应助羊羊采纳,获得10
30秒前
humble完成签到 ,获得积分10
31秒前
ding应助花卷采纳,获得30
32秒前
pterionGao完成签到 ,获得积分10
32秒前
卓哥完成签到,获得积分10
33秒前
33秒前
科研通AI2S应助酷炫枫采纳,获得10
34秒前
35秒前
小李发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495041
求助须知:如何正确求助?哪些是违规求助? 4592784
关于积分的说明 14438739
捐赠科研通 4525625
什么是DOI,文献DOI怎么找? 2479542
邀请新用户注册赠送积分活动 1464382
关于科研通互助平台的介绍 1437279