亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A nomogram incorporating treatment data for predicting overall survival in gastroenteropancreatic neuroendocrine tumors: a population-based cohort study

医学 列线图 比例危险模型 入射(几何) 流行病学 肿瘤科 内科学 阶段(地层学) 监测、流行病学和最终结果 神经内分泌肿瘤 单变量 癌症登记处 多元分析 危险系数 多元统计 统计 光学 物理 生物 置信区间 古生物学 数学
作者
Zeng‐Hong Wu,Guochen Shang,Kun Zhang,Weijun Wang,Mengke Fan,Rong Lin
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:110 (4): 2178-2186 被引量:11
标识
DOI:10.1097/js9.0000000000001080
摘要

Background: Over the last few decades, the annual global incidence of gastroenteropancreatic neuroendocrine tumours (GEP-NETs) has steadily increased. Because of the complex and inconsistent treatment of GEP-NETs, the prognosis of patients with GEP-NETs is still difficult to assess. The study aimed to construct and validate the nomograms included treatment data for prediction overall survival (OS) in GEP-NETs patients. Methods: GEP-NETs patients determined from the Surveillance, Epidemiology, and End Results (SEER)-13 registry database (1992–2018) and with additional treatment data from the SEER-18 registry database (1975–2016). In order to select independent prognostic factors that contribute significantly to patient survival and can be included in the nomogram, multivariate Cox regression analysis was performed using the minimum value of Akaike information criterion (AIC) and we analyzed the relationship of variables with OS by calculating hazard ratios (HRs) and 95% CIs. In addition, we also comprehensively compared the nomogram using to predict OS with the current 7th American Joint Committee on Cancer (AJCC) staging system. Results: From 2004 to 2015, a total of 42 662 patients at diagnosis years with GEP-NETs were determined from the SEER database. The results indicated that the increasing incidence of GEP-NETs per year and the highest incidence is in patients aged 50–54. After removing cases lacking adequate clinicopathologic characteristics, the remaining eligible patients ( n =7564) were randomly divided into training (3782 patients) and testing sets (3782 patients). In the univariate analysis, sex, age, race, tumour location, SEER historic stage, pathology type, TNM, stage, surgery, radiation, chemotherapy, and CS tumour size were found to be significantly related to OS. Ultimately, the key factors for predicting OS were determined, involving sex, age, race, tumour location, SEER historic stage, M, N, grade, surgery, radiation, and chemotherapy. For internal validation, the C-index of the nomogram used to estimate OS in the training set was 0.816 (0.804–0.828). For external validation, the concordance index (C-index) of the nomogram used to predict OS was 0.822 (0.812–0.832). In the training and testing sets, our nomogram produced minimum AIC values and C-index of OS compared with AJCC stage. Decision curve analysis (DCA) indicated that the nomogram was better than the AJCC staging system because more clinical net benefits were obtained within a wider threshold probability range. Conclusion: A nomogram combined treatment data may be better discrimination in predicting overall survival than AJCC staging system. The authors highly recommend to use their nomogram to evaluate individual risks based on different clinical features of GEP-NETs, which can improve the diagnosis and treatment outcomes of GEP-NETs patients and improve their quality of life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
科研通AI6应助LJP采纳,获得10
5秒前
10秒前
伽古拉40k完成签到,获得积分10
10秒前
paperandpen发布了新的文献求助10
17秒前
MchemG完成签到,获得积分0
25秒前
LJP完成签到,获得积分10
28秒前
paperandpen完成签到,获得积分10
36秒前
zzgpku完成签到,获得积分0
51秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
若谷叻完成签到,获得积分10
1分钟前
Chris发布了新的文献求助10
1分钟前
hll完成签到,获得积分10
1分钟前
Chris完成签到,获得积分10
1分钟前
yuchuan应助科研通管家采纳,获得10
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
无花果应助矮小的祥采纳,获得10
1分钟前
脑洞疼应助优美芸采纳,获得10
1分钟前
三毛完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
矮小的祥发布了新的文献求助10
2分钟前
3分钟前
优美芸发布了新的文献求助10
3分钟前
优美芸完成签到,获得积分10
3分钟前
3分钟前
归尘发布了新的文献求助10
3分钟前
SciGPT应助iiii采纳,获得10
3分钟前
香蕉觅云应助科研通管家采纳,获得10
3分钟前
Ava应助科研通管家采纳,获得10
3分钟前
丘比特应助科研通管家采纳,获得10
3分钟前
六六完成签到 ,获得积分10
3分钟前
4分钟前
Willow发布了新的文献求助10
4分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449954
求助须知:如何正确求助?哪些是违规求助? 4557893
关于积分的说明 14265132
捐赠科研通 4481121
什么是DOI,文献DOI怎么找? 2454700
邀请新用户注册赠送积分活动 1445480
关于科研通互助平台的介绍 1421323