亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A short-term wind speed prediction method utilizing rolling decomposition and time-series extension to avoid information leakage

期限(时间) 泄漏(经济) 扩展(谓词逻辑) 计算机科学 系列(地层学) 风速 时间序列 算法 控制理论(社会学) 气象学 人工智能 机器学习 地质学 地理 物理 程序设计语言 宏观经济学 经济 量子力学 古生物学 控制(管理)
作者
Pinhan Zhou,Lian Shen,Yan Han,Lihua Mi,Guoji Xu
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Informa]
卷期号:46 (1): 3338-3362 被引量:2
标识
DOI:10.1080/15567036.2024.2318485
摘要

The accuracy of wind speed prediction is crucial for the efficient operation and scheduling of power grids. In recent years, many wind speed prediction methods have been proposed, but the results have always been unsatisfactory, and the model accuracy in experimental testing has always been overestimated. This study focuses on the problem of information leakage caused by the decomposition of the test and general training sets in traditional wind speed prediction methods. Using the original model without decomposition as the standard and the mean average (PMAE) and mean squared (PMSE) errors as evaluation metrics, the overestimation degree of information leakage on the model accuracy was quantified. The results show that when the test set is decomposed together, the accuracy of the model is significantly overestimated. Specifically, the overestimation of PMAE ranges from 40% to 55%, and that of PMSE is from 65% to 85%. In addition, a singular spectrum analysis (SSA) – rolling decomposition (RD) – convolutional neural network (CNN) – bidirectional gated recurrent unit (BiGRU) – attention mechanism (AM) model based on the RD method was proposed. First, SSA was used to denoise the wind speed sequence, and then RD was performed on the original sequence to provide input vectors for the neural network model. Then, the CNN – BiGRU – AM hybrid neural network module predicted the wind speed sequence. Finally, to suppress the impact of boundary effects on the model accuracy, a time-series extension strategy based on neural networks was incorporated into the model. An example analysis indicates that the SSA – RD – CNN – BiGRU – AM model can avoid information leakage compared with other traditional models.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情的鹭洋完成签到,获得积分10
3秒前
yuanling完成签到 ,获得积分10
12秒前
15秒前
吴迪发布了新的文献求助10
20秒前
田様应助苏亚婷采纳,获得10
32秒前
闫闫完成签到 ,获得积分10
1分钟前
Nancy0818完成签到 ,获得积分10
1分钟前
乐乐应助lalkiii采纳,获得10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
1分钟前
lalkiii发布了新的文献求助10
1分钟前
1分钟前
1分钟前
大模型应助杨惠子采纳,获得10
2分钟前
2分钟前
杨惠子发布了新的文献求助10
2分钟前
杨惠子完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
Hello应助科研通管家采纳,获得10
3分钟前
菜菜完成签到 ,获得积分10
4分钟前
4分钟前
苏亚婷发布了新的文献求助10
4分钟前
点点点完成签到 ,获得积分10
5分钟前
hahasun发布了新的文献求助10
5分钟前
5分钟前
斯文败类应助苏亚婷采纳,获得10
6分钟前
6分钟前
怕孤独的海秋完成签到,获得积分10
6分钟前
6分钟前
6分钟前
科研通AI2S应助吴迪采纳,获得10
6分钟前
小蘑菇应助怕孤独的海秋采纳,获得10
6分钟前
7分钟前
7分钟前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5845406
求助须知:如何正确求助?哪些是违规求助? 6202404
关于积分的说明 15616421
捐赠科研通 4962230
什么是DOI,文献DOI怎么找? 2675328
邀请新用户注册赠送积分活动 1620094
关于科研通互助平台的介绍 1575413