A short-term wind speed prediction method utilizing rolling decomposition and time-series extension to avoid information leakage

期限(时间) 泄漏(经济) 扩展(谓词逻辑) 计算机科学 系列(地层学) 风速 时间序列 算法 控制理论(社会学) 气象学 人工智能 机器学习 地质学 地理 物理 程序设计语言 宏观经济学 经济 量子力学 古生物学 控制(管理)
作者
Pinhan Zhou,Lian Shen,Yan Han,Lihua Mi,Guoji Xu
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Taylor & Francis]
卷期号:46 (1): 3338-3362 被引量:2
标识
DOI:10.1080/15567036.2024.2318485
摘要

The accuracy of wind speed prediction is crucial for the efficient operation and scheduling of power grids. In recent years, many wind speed prediction methods have been proposed, but the results have always been unsatisfactory, and the model accuracy in experimental testing has always been overestimated. This study focuses on the problem of information leakage caused by the decomposition of the test and general training sets in traditional wind speed prediction methods. Using the original model without decomposition as the standard and the mean average (PMAE) and mean squared (PMSE) errors as evaluation metrics, the overestimation degree of information leakage on the model accuracy was quantified. The results show that when the test set is decomposed together, the accuracy of the model is significantly overestimated. Specifically, the overestimation of PMAE ranges from 40% to 55%, and that of PMSE is from 65% to 85%. In addition, a singular spectrum analysis (SSA) – rolling decomposition (RD) – convolutional neural network (CNN) – bidirectional gated recurrent unit (BiGRU) – attention mechanism (AM) model based on the RD method was proposed. First, SSA was used to denoise the wind speed sequence, and then RD was performed on the original sequence to provide input vectors for the neural network model. Then, the CNN – BiGRU – AM hybrid neural network module predicted the wind speed sequence. Finally, to suppress the impact of boundary effects on the model accuracy, a time-series extension strategy based on neural networks was incorporated into the model. An example analysis indicates that the SSA – RD – CNN – BiGRU – AM model can avoid information leakage compared with other traditional models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
1秒前
2秒前
大方的访波完成签到 ,获得积分10
2秒前
2秒前
友好的白柏完成签到 ,获得积分10
2秒前
在水一方应助浔xxx采纳,获得10
3秒前
qin希望应助花生采纳,获得10
3秒前
123123完成签到,获得积分10
4秒前
4秒前
orixero应助潇洒的问夏采纳,获得10
4秒前
lenon发布了新的文献求助10
4秒前
ycg完成签到,获得积分10
5秒前
gz发布了新的文献求助10
5秒前
丘小易发布了新的文献求助10
5秒前
5秒前
stcer完成签到,获得积分10
5秒前
wu驳回了打打应助
5秒前
Adrenaline完成签到,获得积分10
6秒前
大橘完成签到 ,获得积分10
6秒前
和谐迎夏完成签到,获得积分10
6秒前
6秒前
nadeem发布了新的文献求助10
7秒前
BP发布了新的文献求助10
7秒前
7秒前
萤火虫发布了新的文献求助10
7秒前
7秒前
风雨中奔跑的兔子完成签到,获得积分10
8秒前
Hmc完成签到 ,获得积分10
8秒前
Kira完成签到,获得积分10
8秒前
四月完成签到 ,获得积分10
9秒前
孙先生YY发布了新的文献求助10
9秒前
犹豫信封发布了新的文献求助10
10秒前
张亚朋完成签到,获得积分10
11秒前
老妖怪完成签到,获得积分10
11秒前
李爱国应助包容的瑾瑜采纳,获得10
11秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650