A short-term wind speed prediction method utilizing rolling decomposition and time-series extension to avoid information leakage

期限(时间) 泄漏(经济) 扩展(谓词逻辑) 计算机科学 系列(地层学) 风速 时间序列 算法 控制理论(社会学) 气象学 人工智能 机器学习 地质学 地理 物理 宏观经济学 古生物学 量子力学 经济 程序设计语言 控制(管理)
作者
Pinhan Zhou,Lian Shen,Yan Han,Lihua Mi,Guoji Xu
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Taylor & Francis]
卷期号:46 (1): 3338-3362 被引量:2
标识
DOI:10.1080/15567036.2024.2318485
摘要

The accuracy of wind speed prediction is crucial for the efficient operation and scheduling of power grids. In recent years, many wind speed prediction methods have been proposed, but the results have always been unsatisfactory, and the model accuracy in experimental testing has always been overestimated. This study focuses on the problem of information leakage caused by the decomposition of the test and general training sets in traditional wind speed prediction methods. Using the original model without decomposition as the standard and the mean average (PMAE) and mean squared (PMSE) errors as evaluation metrics, the overestimation degree of information leakage on the model accuracy was quantified. The results show that when the test set is decomposed together, the accuracy of the model is significantly overestimated. Specifically, the overestimation of PMAE ranges from 40% to 55%, and that of PMSE is from 65% to 85%. In addition, a singular spectrum analysis (SSA) – rolling decomposition (RD) – convolutional neural network (CNN) – bidirectional gated recurrent unit (BiGRU) – attention mechanism (AM) model based on the RD method was proposed. First, SSA was used to denoise the wind speed sequence, and then RD was performed on the original sequence to provide input vectors for the neural network model. Then, the CNN – BiGRU – AM hybrid neural network module predicted the wind speed sequence. Finally, to suppress the impact of boundary effects on the model accuracy, a time-series extension strategy based on neural networks was incorporated into the model. An example analysis indicates that the SSA – RD – CNN – BiGRU – AM model can avoid information leakage compared with other traditional models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
hahaagain完成签到,获得积分10
1秒前
汉堡包应助核桃采纳,获得10
1秒前
科研通AI6应助核桃采纳,获得10
1秒前
科目三应助核桃采纳,获得10
1秒前
淡然的妙芙应助核桃采纳,获得10
1秒前
大宝完成签到,获得积分10
1秒前
乐乐应助核桃采纳,获得10
1秒前
1秒前
彭于晏应助核桃采纳,获得10
2秒前
Owen应助核桃采纳,获得10
2秒前
SciGPT应助核桃采纳,获得10
2秒前
2秒前
华仔应助核桃采纳,获得10
2秒前
2秒前
3秒前
yiyao完成签到,获得积分10
3秒前
4秒前
Lybb完成签到,获得积分10
4秒前
甜乎贝贝发布了新的文献求助20
4秒前
共享精神应助玉婷采纳,获得10
5秒前
香蕉觅云应助小宇仔采纳,获得10
5秒前
adad发布了新的文献求助10
5秒前
共享精神应助核桃采纳,获得10
6秒前
wanci应助核桃采纳,获得10
6秒前
chlift发布了新的文献求助10
6秒前
lgq12697应助核桃采纳,获得10
6秒前
852应助核桃采纳,获得10
6秒前
李健应助核桃采纳,获得30
6秒前
顾矜应助核桃采纳,获得10
6秒前
天天快乐应助核桃采纳,获得10
6秒前
香蕉觅云应助核桃采纳,获得10
6秒前
李健应助核桃采纳,获得10
6秒前
爆米花应助核桃采纳,获得10
6秒前
无花果应助太空人采纳,获得30
7秒前
共享精神应助流泪猫猫头采纳,获得10
7秒前
7秒前
邓佳鑫Alan应助苹果不平采纳,获得10
7秒前
curtainai完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5095428
求助须知:如何正确求助?哪些是违规求助? 4308538
关于积分的说明 13424622
捐赠科研通 4135366
什么是DOI,文献DOI怎么找? 2265484
邀请新用户注册赠送积分活动 1268868
关于科研通互助平台的介绍 1204869