A short-term wind speed prediction method utilizing rolling decomposition and time-series extension to avoid information leakage

期限(时间) 泄漏(经济) 扩展(谓词逻辑) 计算机科学 系列(地层学) 风速 时间序列 算法 控制理论(社会学) 气象学 人工智能 机器学习 地质学 地理 物理 程序设计语言 宏观经济学 经济 量子力学 古生物学 控制(管理)
作者
Pinhan Zhou,Lian Shen,Yan Han,Lihua Mi,Guoji Xu
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Informa]
卷期号:46 (1): 3338-3362 被引量:2
标识
DOI:10.1080/15567036.2024.2318485
摘要

The accuracy of wind speed prediction is crucial for the efficient operation and scheduling of power grids. In recent years, many wind speed prediction methods have been proposed, but the results have always been unsatisfactory, and the model accuracy in experimental testing has always been overestimated. This study focuses on the problem of information leakage caused by the decomposition of the test and general training sets in traditional wind speed prediction methods. Using the original model without decomposition as the standard and the mean average (PMAE) and mean squared (PMSE) errors as evaluation metrics, the overestimation degree of information leakage on the model accuracy was quantified. The results show that when the test set is decomposed together, the accuracy of the model is significantly overestimated. Specifically, the overestimation of PMAE ranges from 40% to 55%, and that of PMSE is from 65% to 85%. In addition, a singular spectrum analysis (SSA) – rolling decomposition (RD) – convolutional neural network (CNN) – bidirectional gated recurrent unit (BiGRU) – attention mechanism (AM) model based on the RD method was proposed. First, SSA was used to denoise the wind speed sequence, and then RD was performed on the original sequence to provide input vectors for the neural network model. Then, the CNN – BiGRU – AM hybrid neural network module predicted the wind speed sequence. Finally, to suppress the impact of boundary effects on the model accuracy, a time-series extension strategy based on neural networks was incorporated into the model. An example analysis indicates that the SSA – RD – CNN – BiGRU – AM model can avoid information leakage compared with other traditional models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Rochmannn完成签到,获得积分10
2秒前
内向秋寒发布了新的文献求助10
4秒前
5秒前
nekoz发布了新的文献求助10
5秒前
水雾发布了新的文献求助10
6秒前
7秒前
张六六完成签到,获得积分10
8秒前
8秒前
Lee完成签到 ,获得积分10
10秒前
蓝天应助niko采纳,获得10
11秒前
愉快天亦发布了新的文献求助10
12秒前
zhanlan发布了新的文献求助10
13秒前
Aries完成签到,获得积分20
13秒前
勤奋橘子完成签到,获得积分10
14秒前
SciGPT应助leiyuekai采纳,获得10
14秒前
15秒前
缓慢凤凰发布了新的文献求助10
15秒前
烟花应助香菜头采纳,获得30
17秒前
量子星尘发布了新的文献求助10
18秒前
wanci应助zzh采纳,获得10
19秒前
20秒前
天天快乐应助落日出逃采纳,获得10
21秒前
赵永刚完成签到,获得积分10
21秒前
Aries关注了科研通微信公众号
21秒前
阿杰完成签到,获得积分10
22秒前
柒染完成签到 ,获得积分10
24秒前
小天完成签到 ,获得积分10
25秒前
26秒前
CR7应助李嘉图采纳,获得20
26秒前
我是老大应助曹博盛采纳,获得30
27秒前
小天关注了科研通微信公众号
28秒前
hao发布了新的文献求助10
29秒前
huangman完成签到,获得积分10
31秒前
32秒前
wz完成签到,获得积分10
34秒前
之组长了完成签到 ,获得积分10
34秒前
35秒前
苏世完成签到,获得积分10
36秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633958
求助须知:如何正确求助?哪些是违规求助? 4729818
关于积分的说明 14987080
捐赠科研通 4791757
什么是DOI,文献DOI怎么找? 2559034
邀请新用户注册赠送积分活动 1519478
关于科研通互助平台的介绍 1479707