GCN-assisted attention-guided UNet for automated retinal OCT segmentation

计算机科学 视网膜 分割 人工智能 模式识别(心理学) 眼科 医学
作者
Dongsuk Oh,J.E. Moon,Kyoung-Tae Park,Wonjun Kim,Seungho Yoo,Hyungwoo Lee,Jae Hung Yoo
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123620-123620
标识
DOI:10.1016/j.eswa.2024.123620
摘要

With the increase in the aging population of many countries, the prevalence of neovascular age-related macular generation (nAMD) is expected to increase. Morphological parameters such as intraretinal fluid (IRF), subretinal fluid (SRF), subretinal hyperreflective material (SHRM), and pigment epithelium detachment (PED) of spectral-domain optical coherence tomography (SD-OCT) images are vital markers for proper treatment of nAMD, especially to get the information of treatment response to determine the proper treatment interval and switching of anti-vascular endothelial growth factor (VEGF) agents. For the precise evaluation of the change in nAMD lesions and patient-specific treatment, quantitative evaluation of the lesions in the OCT volume scans is necessary. However, manual segmentation requires many resources, and the number of studies of automatic segmentation is increasing rapidly. Improving automated segmentation performance in SD-OCT visual results requires long-range contextual inference of spatial information between retinal lesions and layers. This paper proposes a GAGUNet (graph convolution network (GCN)-assisted attention-guided UNet) model with a novel global reasoning module considering these points. The dataset used in the main experiment of this study underwent rigorous review by a retinal specialist from Konkuk University Hospital in Korea, contributing to both data preprocessing and validation to ensure a qualitative assessment. We conducted experiments on the RETOUCH dataset as well to demonstrate the scalability of the proposed model. Overall, our model demonstrates superior performance over the baseline models in both quantitative and qualitative evaluations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
年轻的吐司完成签到,获得积分10
4秒前
陶醉铁身完成签到,获得积分20
5秒前
方格子完成签到 ,获得积分10
5秒前
完美世界应助Freja采纳,获得10
6秒前
大福完成签到,获得积分10
6秒前
陶醉铁身发布了新的文献求助10
8秒前
9秒前
DUAN完成签到,获得积分10
10秒前
一天不学浑身难受完成签到 ,获得积分10
15秒前
珍珠发布了新的文献求助10
16秒前
17秒前
17秒前
wq完成签到,获得积分10
18秒前
20秒前
21秒前
zho发布了新的文献求助10
22秒前
Spine脊柱发布了新的文献求助10
23秒前
珍珠完成签到 ,获得积分20
24秒前
26秒前
27秒前
little2000完成签到 ,获得积分10
27秒前
29秒前
圆圆圆完成签到 ,获得积分10
29秒前
31秒前
zho发布了新的文献求助10
33秒前
路过完成签到,获得积分10
34秒前
隐形曼青应助史宸瑞采纳,获得10
36秒前
nwds发布了新的文献求助10
38秒前
39秒前
bbecky完成签到,获得积分10
42秒前
小白果果完成签到,获得积分10
44秒前
田様应助清凉茶采纳,获得10
44秒前
zho发布了新的文献求助10
46秒前
muxiangrong应助旖旎采纳,获得10
47秒前
开放飞阳完成签到 ,获得积分10
47秒前
47秒前
bbecky发布了新的文献求助10
48秒前
热心丹南完成签到,获得积分10
50秒前
jovi完成签到 ,获得积分10
50秒前
zho完成签到,获得积分0
53秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
Introduction to Modern Controls, with illustrations in MATLAB and Python 310
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3057308
求助须知:如何正确求助?哪些是违规求助? 2713802
关于积分的说明 7437402
捐赠科研通 2358921
什么是DOI,文献DOI怎么找? 1249607
科研通“疑难数据库(出版商)”最低求助积分说明 607190
版权声明 596314