GCN-assisted attention-guided UNet for automated retinal OCT segmentation

计算机科学 视网膜 分割 人工智能 模式识别(心理学) 眼科 医学
作者
Dongsuk Oh,J.E. Moon,Kyoung-Tae Park,Wonjun Kim,Seungho Yoo,Hyungwoo Lee,J.H. Yoo
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123620-123620 被引量:1
标识
DOI:10.1016/j.eswa.2024.123620
摘要

With the increase in the aging population of many countries, the prevalence of neovascular age-related macular generation (nAMD) is expected to increase. Morphological parameters such as intraretinal fluid (IRF), subretinal fluid (SRF), subretinal hyperreflective material (SHRM), and pigment epithelium detachment (PED) of spectral-domain optical coherence tomography (SD-OCT) images are vital markers for proper treatment of nAMD, especially to get the information of treatment response to determine the proper treatment interval and switching of anti-vascular endothelial growth factor (VEGF) agents. For the precise evaluation of the change in nAMD lesions and patient-specific treatment, quantitative evaluation of the lesions in the OCT volume scans is necessary. However, manual segmentation requires many resources, and the number of studies of automatic segmentation is increasing rapidly. Improving automated segmentation performance in SD-OCT visual results requires long-range contextual inference of spatial information between retinal lesions and layers. This paper proposes a GAGUNet (graph convolution network (GCN)-assisted attention-guided UNet) model with a novel global reasoning module considering these points. The dataset used in the main experiment of this study underwent rigorous review by a retinal specialist from Konkuk University Hospital in Korea, contributing to both data preprocessing and validation to ensure a qualitative assessment. We conducted experiments on the RETOUCH dataset as well to demonstrate the scalability of the proposed model. Overall, our model demonstrates superior performance over the baseline models in both quantitative and qualitative evaluations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
风趣问雁完成签到 ,获得积分10
6秒前
6秒前
7秒前
111111zx111发布了新的文献求助10
10秒前
11秒前
温柔季节发布了新的文献求助10
12秒前
song完成签到 ,获得积分10
12秒前
qqq发布了新的文献求助10
12秒前
13秒前
13秒前
JamesPei应助王武聪采纳,获得10
14秒前
Rondab应助失眠的狗采纳,获得10
16秒前
17秒前
17秒前
wkjfh完成签到,获得积分0
18秒前
唐卟哩钵完成签到,获得积分10
18秒前
Rondab应助hg08采纳,获得10
19秒前
拓跋凝海完成签到,获得积分10
19秒前
19秒前
21秒前
22秒前
沉默的宛筠应助liu采纳,获得10
22秒前
Transition发布了新的文献求助10
23秒前
家家完成签到 ,获得积分10
23秒前
默默的如凡完成签到,获得积分10
23秒前
24秒前
ioio发布了新的文献求助10
24秒前
qqq完成签到,获得积分10
26秒前
27秒前
天天快乐应助Amon采纳,获得10
28秒前
30秒前
32秒前
包李发布了新的文献求助10
34秒前
111111zx111完成签到,获得积分10
35秒前
精美礼物给精美礼物的求助进行了留言
36秒前
NexusExplorer应助raolixiang采纳,获得10
38秒前
38秒前
哲别发布了新的文献求助10
41秒前
充电宝应助tt采纳,获得10
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989797
求助须知:如何正确求助?哪些是违规求助? 3531914
关于积分的说明 11255516
捐赠科研通 3270597
什么是DOI,文献DOI怎么找? 1805008
邀请新用户注册赠送积分活动 882181
科研通“疑难数据库(出版商)”最低求助积分说明 809190