GCN-assisted attention-guided UNet for automated retinal OCT segmentation

计算机科学 视网膜 分割 人工智能 模式识别(心理学) 眼科 医学
作者
Dongsuk Oh,J.E. Moon,Kyoung-Tae Park,Wonjun Kim,Seungho Yoo,Hyungwoo Lee,Jae Hung Yoo
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123620-123620
标识
DOI:10.1016/j.eswa.2024.123620
摘要

With the increase in the aging population of many countries, the prevalence of neovascular age-related macular generation (nAMD) is expected to increase. Morphological parameters such as intraretinal fluid (IRF), subretinal fluid (SRF), subretinal hyperreflective material (SHRM), and pigment epithelium detachment (PED) of spectral-domain optical coherence tomography (SD-OCT) images are vital markers for proper treatment of nAMD, especially to get the information of treatment response to determine the proper treatment interval and switching of anti-vascular endothelial growth factor (VEGF) agents. For the precise evaluation of the change in nAMD lesions and patient-specific treatment, quantitative evaluation of the lesions in the OCT volume scans is necessary. However, manual segmentation requires many resources, and the number of studies of automatic segmentation is increasing rapidly. Improving automated segmentation performance in SD-OCT visual results requires long-range contextual inference of spatial information between retinal lesions and layers. This paper proposes a GAGUNet (graph convolution network (GCN)-assisted attention-guided UNet) model with a novel global reasoning module considering these points. The dataset used in the main experiment of this study underwent rigorous review by a retinal specialist from Konkuk University Hospital in Korea, contributing to both data preprocessing and validation to ensure a qualitative assessment. We conducted experiments on the RETOUCH dataset as well to demonstrate the scalability of the proposed model. Overall, our model demonstrates superior performance over the baseline models in both quantitative and qualitative evaluations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
kk发布了新的文献求助10
1秒前
小蘑菇应助史道夫采纳,获得10
2秒前
2秒前
wanci应助史道夫采纳,获得10
2秒前
赘婿应助史道夫采纳,获得10
2秒前
小马甲应助史道夫采纳,获得10
2秒前
小二郎应助史道夫采纳,获得10
2秒前
Hello应助史道夫采纳,获得10
2秒前
研友_VZG7GZ应助史道夫采纳,获得10
2秒前
斯文败类应助史道夫采纳,获得10
2秒前
Jasper应助史道夫采纳,获得10
2秒前
刘一安完成签到 ,获得积分10
2秒前
PrayOne完成签到 ,获得积分10
2秒前
小羊完成签到,获得积分10
2秒前
Man发布了新的文献求助10
2秒前
淡定小白菜发布了新的文献求助100
3秒前
bkagyin应助你针豆采纳,获得10
3秒前
iufan发布了新的文献求助10
3秒前
思思发布了新的文献求助10
3秒前
4秒前
打地鼠工人完成签到,获得积分10
4秒前
Zhaowx完成签到,获得积分10
5秒前
金山发布了新的文献求助10
6秒前
6秒前
6秒前
LL发布了新的文献求助10
7秒前
aigj完成签到 ,获得积分10
7秒前
7秒前
7秒前
zzz发布了新的文献求助10
7秒前
粥粥完成签到,获得积分10
7秒前
随便编的昵称完成签到,获得积分10
7秒前
略略略完成签到,获得积分10
7秒前
罗小白完成签到,获得积分10
8秒前
9秒前
NexusExplorer应助霖槿采纳,获得10
9秒前
1112发布了新的文献求助10
10秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134659
求助须知:如何正确求助?哪些是违规求助? 2785567
关于积分的说明 7773009
捐赠科研通 2441215
什么是DOI,文献DOI怎么找? 1297881
科研通“疑难数据库(出版商)”最低求助积分说明 625070
版权声明 600825