已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

YOLOv8-PoseBoost: Advancements in Multimodal Robot Pose Keypoint Detection

人工智能 计算机视觉 计算机科学 机器人
作者
Feng Wang,Gang Wang,Baoli Lu
出处
期刊:Electronics [MDPI AG]
卷期号:13 (6): 1046-1046 被引量:1
标识
DOI:10.3390/electronics13061046
摘要

In the field of multimodal robotics, achieving comprehensive and accurate perception of the surrounding environment is a highly sought-after objective. However, current methods still have limitations in motion keypoint detection, especially in scenarios involving small target detection and complex scenes. To address these challenges, we propose an innovative approach known as YOLOv8-PoseBoost. This method introduces the Channel Attention Module (CBAM) to enhance the network’s focus on small targets, thereby increasing sensitivity to small target individuals. Additionally, we employ multiple scale detection heads, enabling the algorithm to comprehensively detect individuals of varying sizes in images. The incorporation of cross-level connectivity channels further enhances the fusion of features between shallow and deep networks, reducing the rate of missed detections for small target individuals. We also introduce a Scale Invariant Intersection over Union (SIoU) redefined bounding box regression localization loss function, which accelerates model training convergence and improves detection accuracy. Through a series of experiments, we validate YOLOv8-PoseBoost’s outstanding performance in motion keypoint detection for small targets and complex scenes. This innovative approach provides an effective solution for enhancing the perception and execution capabilities of multimodal robots. It has the potential to drive the development of multimodal robots across various application domains, holding both theoretical and practical significance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助Hanna2021采纳,获得10
刚刚
3秒前
香蕉觅云应助暴打柠檬茶采纳,获得10
5秒前
泥巴发布了新的文献求助10
5秒前
panwei完成签到 ,获得积分10
10秒前
14秒前
drrobins完成签到,获得积分10
15秒前
123完成签到 ,获得积分10
16秒前
16秒前
和平小鸽发布了新的文献求助10
19秒前
HonglinGao完成签到,获得积分10
20秒前
iNk应助xsw采纳,获得10
21秒前
YIX完成签到,获得积分10
22秒前
24秒前
sulili完成签到,获得积分10
25秒前
26秒前
跳跃野狼完成签到 ,获得积分10
26秒前
123发布了新的文献求助10
27秒前
drrobins发布了新的文献求助10
28秒前
29秒前
跳跃野狼发布了新的文献求助10
30秒前
蓝天发布了新的文献求助10
32秒前
33秒前
34秒前
34秒前
37秒前
123完成签到,获得积分20
38秒前
跳跃野狼发布了新的文献求助10
39秒前
泥巴发布了新的文献求助10
40秒前
resetttttt完成签到 ,获得积分10
41秒前
42秒前
yuaner发布了新的文献求助10
42秒前
搜集达人应助搞怪远侵采纳,获得20
45秒前
圆润的糯米糍完成签到 ,获得积分10
46秒前
耍酷芹菜完成签到,获得积分10
50秒前
51秒前
小二郎应助土耳其小喵喵采纳,获得10
51秒前
53秒前
我是老大应助远方采纳,获得30
53秒前
55秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234342
求助须知:如何正确求助?哪些是违规求助? 2880713
关于积分的说明 8216705
捐赠科研通 2548304
什么是DOI,文献DOI怎么找? 1377655
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302