In-situ monitoring additive manufacturing process with AI edge computing

计算机科学 人工智能 计算机视觉 实时计算 过程(计算) GSM演进的增强数据速率 操作系统
作者
Wenkang Zhu,Hui Li,Shengnan Shen,Yingjie Wang,Yuqing Hou,Yikai Zhang,Liwei Chen
出处
期刊:Optics and Laser Technology [Elsevier]
卷期号:171: 110423-110423 被引量:3
标识
DOI:10.1016/j.optlastec.2023.110423
摘要

In additive manufacturing (AM), in-situ monitoring systems are vital for ensuring process quality. However, the widespread adoption of traditional high-speed camera-based monitoring systems is hindered by the prohibitively high cost of the required high-speed cameras. This paper introduces an innovative low-cost in-situ monitoring system that utilizes AI edge computing boards to expedite digital image processing without requiring high resolution (HR) video sequences. The system integrates a visual transformer-based video super resolution (ViTSR) network for reconstructing high resolution video frames and employs a fully convolutional network (FCN) to extract geometric characteristics of the molten pool and plasma arc simultaneously during AM processes. Comparing ViTSR with six state-of-the-art super-resolution methods, it achieved the highest peak signal-to-noise ratio (PSNR) of 38.16 dB on the test data. Moreover, the FCN utilized the reconstruction results from ViTSR, demonstrating an accuracy of 96.34% in multi-object extraction tasks. Through operator fusion and model pruning, the inference time of ViTSR and FCN on the AI edge board is optimized to 50.97 ms and 67.86 ms, respectively. Consequently, the proposed system achieves a total inference time of 118.83 ms, meeting the real-time quality monitoring needs of AM processes. Furthermore, this approach effectively reduces the expenses associated with high-speed camera-based monitoring systems, thereby promoting the widespread adoption of in-situ monitoring systems within the realm of AM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿星完成签到,获得积分10
刚刚
starcraftfan发布了新的文献求助10
刚刚
万能图书馆应助风中龙猫采纳,获得10
刚刚
欢喜傲易完成签到,获得积分10
1秒前
苏打完成签到 ,获得积分10
1秒前
1秒前
小灰灰发布了新的文献求助10
1秒前
phy完成签到,获得积分10
2秒前
扬眉亮剑完成签到,获得积分10
2秒前
衣兮发布了新的文献求助10
3秒前
韩野发布了新的文献求助10
3秒前
3秒前
WANJCE发布了新的文献求助10
4秒前
percy发布了新的文献求助10
4秒前
4秒前
雪白的听寒完成签到 ,获得积分10
5秒前
7秒前
妙妙宝贝发布了新的文献求助20
7秒前
陶醉觅夏发布了新的文献求助10
7秒前
人间世完成签到 ,获得积分10
7秒前
7秒前
7秒前
8秒前
9秒前
汤汤完成签到,获得积分10
9秒前
852应助WANJCE采纳,获得10
10秒前
10秒前
tctc发布了新的文献求助10
11秒前
makenemore完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
hiiuuu发布了新的文献求助10
14秒前
whywhy发布了新的文献求助40
14秒前
14秒前
14秒前
无花果应助沈清酌采纳,获得10
15秒前
15秒前
科研通AI6应助满意沛槐采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5530788
求助须知:如何正确求助?哪些是违规求助? 4619762
关于积分的说明 14570057
捐赠科研通 4559290
什么是DOI,文献DOI怎么找? 2498318
邀请新用户注册赠送积分活动 1478269
关于科研通互助平台的介绍 1449838