材料科学
阳极
氧化钴
离子
煅烧
钴
电池(电)
化学工程
锂(药物)
锂离子电池
钠离子电池
纳米复合材料
氧化物
电极
纳米技术
无机化学
法拉第效率
催化作用
冶金
化学
有机化学
功率(物理)
物理化学
内分泌学
工程类
物理
医学
量子力学
作者
Bharathi Konkena,Kalapu Chakrapani,Harneet Kaur,Angelika Holzinger,Hugh Geaney,Valeria Nicolosi,Micheál D. Scanlon,Jonathan N. Coleman
标识
DOI:10.1021/acsami.3c11795
摘要
Cobalt oxide (Co3O4)-based nanostructures have the potential as low-cost materials for lithium-ion (Li-ion) and sodium-ion (Na-ion) battery anodes with a theoretical capacity of 890 mAh/g. Here, we demonstrate a novel method for the production of Co3O4 nanoplatelets. This involves the growth of flower-like cobalt oxyhydroxide (CoOOH) nanostructures at a polarized liquid|liquid interface, followed by conversion to flower-like Co3O4 via calcination. Finally, sonication is used to break up the flower-like Co3O4 nanostructures into two-dimensional (2D) nanoplatelets with lateral sizes of 20–100 nm. Nanoplatelets of Co3O4 can be easily mixed with carbon nanotubes to create nanocomposite anodes, which can be used for Li-ion and Na-ion battery anodes without any additional binder or conductive additive. The resultant electrodes display impressive low-rate capacities (at 125 mA/g) of 1108 and 1083 mAh/g, for Li-ion and Na-ion anodes, respectively, and stable cycling ability over >200 cycles. Detailed quantitative rate analysis clearly shows that Li-ion-storing anodes charge roughly five times faster than Na-ion-storing anodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI