On-road high-emitting vehicle identification by an automatic hyperparameter optimization model based on a remote sensing system

RSS 汽车工程 超参数 实时计算 鉴定(生物学) 工程类 计算机科学 特征(语言学) 射频识别 模拟 人工智能 语言学 哲学 植物 计算机安全 生物 操作系统
作者
Hao Xie,Yujun Zhang,Ying He,Kun You,Pangda Dai,Bo Fan,Dejin Yu,Wangchun Zhang,Wenqing Liu
出处
期刊:Measurement [Elsevier]
卷期号:225: 113938-113938 被引量:1
标识
DOI:10.1016/j.measurement.2023.113938
摘要

Optical remote sensing systems (RSSs) are ideal for monitoring and identifying high-emitting vehicles on roads, as they can be installed on any road for non-contact measurements. In general, an on-road vehicle is considered a high-emitting vehicle when its instantaneous emissions exceed the specified cut-points, as monitored by RSSs. However, RSS measurements of vehicle emissions are easily influenced by transient operating conditions of passing vehicles and multiple environmental factors, resulting in variable results for the same vehicle, further interfering with the screening of high-emitting vehicles. In this paper, an automatic hyperparametric optimization model is established in an RSS to identify high-emitting vehicles by fusing multi-feature data on environmental factors and vehicle operating conditions obtained from the RSS with the chassis and engine dynamometer test results provided by vehicle inspection stations (VISs). Qualitative and quantitative experimental results show that our model exhibits better recognition performance for high-emitting vehicles in RSSs of different times and sites, which reflects the good self-adaptability of the model. Moreover, the hyperparameters of the model do not need to be manually adjusted, so the model can be automatically trained to meet the requirements of real-time recognition scenarios for high-emitting vehicles on the road.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追光完成签到,获得积分10
1秒前
喜马拉雅川完成签到,获得积分10
1秒前
69完成签到,获得积分10
1秒前
byzhao19发布了新的文献求助10
1秒前
Xie发布了新的文献求助10
2秒前
852应助艾雪采纳,获得10
2秒前
summer发布了新的文献求助20
2秒前
SciGPT应助shukq采纳,获得10
3秒前
3秒前
3秒前
arran1111发布了新的文献求助10
4秒前
5秒前
大淼完成签到,获得积分10
5秒前
小燕子完成签到 ,获得积分10
5秒前
你猜完成签到,获得积分10
5秒前
6秒前
所所应助Oscillator采纳,获得10
6秒前
6秒前
在水一方应助昭荃采纳,获得10
6秒前
满天都是小星星关注了科研通微信公众号
6秒前
7秒前
传奇3应助嘭嘭嘭采纳,获得10
7秒前
8秒前
科研小虫发布了新的文献求助10
8秒前
8秒前
8秒前
科研通AI6.1应助Alice采纳,获得10
9秒前
大模型应助Evelyn采纳,获得10
9秒前
Pises完成签到,获得积分10
9秒前
9秒前
桃紫发布了新的文献求助10
10秒前
FashionBoy应助犹豫晓啸采纳,获得10
10秒前
11秒前
ZLY发布了新的文献求助10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
田様应助MuMu采纳,获得10
13秒前
13秒前
Charlie发布了新的文献求助30
13秒前
科研通AI6.1应助Xie采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785064
求助须知:如何正确求助?哪些是违规求助? 5685309
关于积分的说明 15466430
捐赠科研通 4914115
什么是DOI,文献DOI怎么找? 2645093
邀请新用户注册赠送积分活动 1592886
关于科研通互助平台的介绍 1547281