已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A fix-and-optimize heuristic for the Unrelated Parallel Machine Scheduling Problem

计算机科学 水准点(测量) 解算器 数学优化 调度(生产过程) 启发式 边距(机器学习) 作业车间调度 算法 数学 人工智能 机器学习 地铁列车时刻表 大地测量学 操作系统 地理
作者
George Henrique Godim da Fonseca,Guilherme Baumgratz Figueiroa,Túlio A. M. Toffolo
出处
期刊:Computers & Operations Research [Elsevier]
卷期号:163: 106504-106504 被引量:8
标识
DOI:10.1016/j.cor.2023.106504
摘要

This paper proposes and evaluates a matheuristic approach for the Unrelated Parallel Machine Scheduling Problem (UPMSP). The UPMSP consists of assigning jobs to unrelated parallel machines considering different processing times for the same job in different machines. Additionally, a setup time is considered between the execution of jobs in the same machine. The problem is addressed by a fix-and-optimize matheuristic that iteratively selects a subset of variables to be fixed to their current values so that the remaining variables will compose a subproblem to be optimized by a mathematical programming solver. In the proposed approach, each subproblem consists of a subset of jobs that are assigned to a subset of machines in the incumbent solution. The subproblems are solved by the state-of-the-art exact algorithm for the UPMSP. In the experiments conducted on benchmark instances, the proposed fix-and-optimize algorithm achieved remarkable results. It outperformed the standalone exact algorithm by a large margin and resulted in competitive solutions when compared to the literature’s best-performing heuristic method for the problem. The proposed algorithm obtained the best solution for 669 out of the 1000 instances addressed in this work. Among them, 338 are new best-known solutions. In general, the proposed approach excels at solving instances with a high number of jobs per machine - it resulted in the best solution for 89% of the instances with a ratio of 10 or more jobs per machine in total.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
朱金雨完成签到 ,获得积分10
3秒前
4秒前
囡囡发布了新的文献求助10
6秒前
6秒前
mxh发布了新的文献求助10
8秒前
8秒前
10秒前
CodeCraft应助瘦瘦大白采纳,获得10
11秒前
Ykaor完成签到 ,获得积分10
11秒前
12秒前
13秒前
13秒前
汉堡包应助伶俐的高烽采纳,获得10
14秒前
守护星星发布了新的文献求助10
16秒前
16秒前
天天快乐应助sci一点就通采纳,获得10
17秒前
18秒前
贪玩梦山发布了新的文献求助10
19秒前
21秒前
守护星星完成签到,获得积分10
23秒前
欢呼宛秋完成签到,获得积分10
24秒前
211JZH完成签到 ,获得积分10
24秒前
完美世界应助mxh采纳,获得10
25秒前
大龙完成签到 ,获得积分10
25秒前
月子淇应助霸气的金鱼采纳,获得10
27秒前
27秒前
1123完成签到 ,获得积分10
28秒前
28秒前
南寅完成签到,获得积分10
30秒前
heihei完成签到,获得积分10
30秒前
Cosmosurfer完成签到,获得积分10
30秒前
dida发布了新的文献求助10
31秒前
瘦瘦大白发布了新的文献求助10
31秒前
32秒前
灵巧的嚣完成签到,获得积分10
33秒前
W~舞完成签到,获得积分10
34秒前
优雅柏柳发布了新的文献求助10
37秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476217
求助须知:如何正确求助?哪些是违规求助? 4577883
关于积分的说明 14363077
捐赠科研通 4505789
什么是DOI,文献DOI怎么找? 2468870
邀请新用户注册赠送积分活动 1456491
关于科研通互助平台的介绍 1430126