清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

M-Swin: Transformer-Based Multiscale Feature Fusion Change Detection Network Within Cropland for Remote Sensing Images

变更检测 遥感 计算机科学 比例(比率) 特征(语言学) 传感器融合 特征提取 图像融合 人工智能 模式识别(心理学) 地质学 图像(数学) 地图学 地理 语言学 哲学
作者
Jun Pan,Yuchuan Bai,Qidi Shu,Zhuoer Zhang,Jiarui Hu,Mi Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:22
标识
DOI:10.1109/tgrs.2024.3374421
摘要

Remote sensing image change detection is extensively utilized in various applications in the field of remote sensing, particularly in the realm of cropland conservation, where it plays a critical role in protecting the agro-ecosystem and ensuring global food security. However, the progressive improvement in resolution and size of remote sensing imagery has led to a 'scale gap' challenge in the detection of small building changes in cropland areas. To address this challenge, an innovative multi-scale feature fusion change detection network (M-Swin) based on transformer using hierarchical windows is proposed. In order to obtain clearer edges and better separation of the change results, a novel saimese transformer encoder (MSW encoder) is proposed, which can better capture the change information in small building through hierarchical windows and fuse the multi-scale feature obtained from different windows. To effectively reduce missed and misdetected small-area of changing buildings, a novel bi-temporal image feature fusion module (BFFM) is proposed, which can enhance the features based on a priori guidance, thus improving the saliency of change regions. Additionally, a new remote sensing image change detection dataset for cropland, called LuojiaSET-CLCD, has been proposed. Experimentally demonstrates that M-Swin has good potential for highly accurate change detection of small buildings within cropland areas and outperforms several newly existing methods in three datasets (LEVIR, WHU-CD and LuojiaSET-CLCD). Our dataset will be publicly available at https://github.com/RSIIPAC/LuojiaSET-CLCD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助niko采纳,获得10
2秒前
领导范儿应助niko采纳,获得10
2秒前
乐乐应助niko采纳,获得10
2秒前
星辰大海应助niko采纳,获得10
2秒前
搜集达人应助niko采纳,获得50
2秒前
隐形曼青应助niko采纳,获得10
2秒前
李健应助niko采纳,获得10
2秒前
Akim应助niko采纳,获得10
2秒前
SciGPT应助niko采纳,获得10
2秒前
脑洞疼应助niko采纳,获得10
2秒前
Criminology34应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
消炎药完成签到,获得积分10
9秒前
常有李完成签到,获得积分10
41秒前
两个榴莲完成签到,获得积分0
45秒前
bastien完成签到 ,获得积分10
1分钟前
1分钟前
Jenny完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Jenny完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534355
求助须知:如何正确求助?哪些是违规求助? 4622348
关于积分的说明 14582572
捐赠科研通 4562591
什么是DOI,文献DOI怎么找? 2500254
邀请新用户注册赠送积分活动 1479794
关于科研通互助平台的介绍 1450981