M-Swin: Transformer-Based Multiscale Feature Fusion Change Detection Network Within Cropland for Remote Sensing Images

变更检测 遥感 计算机科学 比例(比率) 特征(语言学) 传感器融合 特征提取 图像融合 人工智能 模式识别(心理学) 地质学 图像(数学) 地图学 地理 语言学 哲学
作者
Jun Pan,Yuchuan Bai,Qidi Shu,Zhuoer Zhang,Jiarui Hu,Mi Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:22
标识
DOI:10.1109/tgrs.2024.3374421
摘要

Remote sensing image change detection is extensively utilized in various applications in the field of remote sensing, particularly in the realm of cropland conservation, where it plays a critical role in protecting the agro-ecosystem and ensuring global food security. However, the progressive improvement in resolution and size of remote sensing imagery has led to a 'scale gap' challenge in the detection of small building changes in cropland areas. To address this challenge, an innovative multi-scale feature fusion change detection network (M-Swin) based on transformer using hierarchical windows is proposed. In order to obtain clearer edges and better separation of the change results, a novel saimese transformer encoder (MSW encoder) is proposed, which can better capture the change information in small building through hierarchical windows and fuse the multi-scale feature obtained from different windows. To effectively reduce missed and misdetected small-area of changing buildings, a novel bi-temporal image feature fusion module (BFFM) is proposed, which can enhance the features based on a priori guidance, thus improving the saliency of change regions. Additionally, a new remote sensing image change detection dataset for cropland, called LuojiaSET-CLCD, has been proposed. Experimentally demonstrates that M-Swin has good potential for highly accurate change detection of small buildings within cropland areas and outperforms several newly existing methods in three datasets (LEVIR, WHU-CD and LuojiaSET-CLCD). Our dataset will be publicly available at https://github.com/RSIIPAC/LuojiaSET-CLCD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一帆锋顺发布了新的文献求助10
3秒前
老年人完成签到,获得积分10
3秒前
FUNG发布了新的文献求助10
3秒前
肖鹏发布了新的文献求助10
3秒前
无敌阿东发布了新的文献求助10
4秒前
6秒前
6秒前
Leofar完成签到 ,获得积分10
8秒前
霖昭完成签到,获得积分10
8秒前
翊然甜周完成签到,获得积分10
8秒前
9秒前
10秒前
彭于晏应助肖鹏采纳,获得10
10秒前
13333发布了新的文献求助10
11秒前
Young完成签到,获得积分10
11秒前
鹿lu发布了新的文献求助10
11秒前
Orange应助TT001采纳,获得30
11秒前
11秒前
轻松的语海完成签到,获得积分10
11秒前
诸觅双发布了新的文献求助10
12秒前
12秒前
13秒前
材料十三郎完成签到,获得积分10
14秒前
14秒前
赖林发布了新的文献求助10
15秒前
16秒前
木头人应助13333采纳,获得10
16秒前
17秒前
肖鹏完成签到,获得积分20
17秒前
lppp完成签到 ,获得积分10
18秒前
垃圾完成签到 ,获得积分10
19秒前
你好夏天完成签到 ,获得积分10
20秒前
12345完成签到,获得积分10
26秒前
nn完成签到,获得积分10
26秒前
二二二完成签到 ,获得积分10
28秒前
Lucas应助民族风采纳,获得10
31秒前
33秒前
34秒前
35秒前
dd完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284222
求助须知:如何正确求助?哪些是违规求助? 4437791
关于积分的说明 13814979
捐赠科研通 4318770
什么是DOI,文献DOI怎么找? 2370598
邀请新用户注册赠送积分活动 1366003
关于科研通互助平台的介绍 1329460