M-Swin: Transformer-Based Multiscale Feature Fusion Change Detection Network Within Cropland for Remote Sensing Images

变更检测 遥感 计算机科学 比例(比率) 特征(语言学) 传感器融合 特征提取 图像融合 人工智能 模式识别(心理学) 地质学 图像(数学) 地图学 地理 语言学 哲学
作者
Jun Pan,Yuchuan Bai,Qidi Shu,Zhuoer Zhang,Jiarui Hu,Mi Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:22
标识
DOI:10.1109/tgrs.2024.3374421
摘要

Remote sensing image change detection is extensively utilized in various applications in the field of remote sensing, particularly in the realm of cropland conservation, where it plays a critical role in protecting the agro-ecosystem and ensuring global food security. However, the progressive improvement in resolution and size of remote sensing imagery has led to a 'scale gap' challenge in the detection of small building changes in cropland areas. To address this challenge, an innovative multi-scale feature fusion change detection network (M-Swin) based on transformer using hierarchical windows is proposed. In order to obtain clearer edges and better separation of the change results, a novel saimese transformer encoder (MSW encoder) is proposed, which can better capture the change information in small building through hierarchical windows and fuse the multi-scale feature obtained from different windows. To effectively reduce missed and misdetected small-area of changing buildings, a novel bi-temporal image feature fusion module (BFFM) is proposed, which can enhance the features based on a priori guidance, thus improving the saliency of change regions. Additionally, a new remote sensing image change detection dataset for cropland, called LuojiaSET-CLCD, has been proposed. Experimentally demonstrates that M-Swin has good potential for highly accurate change detection of small buildings within cropland areas and outperforms several newly existing methods in three datasets (LEVIR, WHU-CD and LuojiaSET-CLCD). Our dataset will be publicly available at https://github.com/RSIIPAC/LuojiaSET-CLCD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ysk发布了新的文献求助10
1秒前
小樱颖子完成签到 ,获得积分10
3秒前
小二郎应助苗条傲蕾采纳,获得10
3秒前
3秒前
英姑应助班里采纳,获得10
3秒前
我下载不了论文啊完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
陈雨发布了新的文献求助10
10秒前
qiuli完成签到,获得积分10
10秒前
酷波er应助Kilig采纳,获得30
10秒前
无极微光应助废寝忘食采纳,获得40
11秒前
14秒前
14秒前
诗亭完成签到,获得积分10
14秒前
刘英岑完成签到,获得积分10
17秒前
王誉霖完成签到,获得积分10
17秒前
17秒前
阳光he完成签到,获得积分10
18秒前
班里发布了新的文献求助10
18秒前
啦啦啦123发布了新的文献求助10
19秒前
废寝忘食完成签到,获得积分10
19秒前
dandan完成签到,获得积分10
20秒前
22秒前
24秒前
啦啦啦123完成签到,获得积分10
24秒前
冷傲迎梦完成签到,获得积分20
27秒前
27秒前
ysk完成签到,获得积分10
28秒前
王辰宁完成签到,获得积分10
29秒前
小树完成签到 ,获得积分10
29秒前
gomm完成签到,获得积分10
29秒前
哈哈哈完成签到,获得积分10
30秒前
Rae完成签到,获得积分10
31秒前
冷傲迎梦发布了新的文献求助10
31秒前
32秒前
量子星尘发布了新的文献求助10
33秒前
34秒前
迷路的糜完成签到,获得积分10
35秒前
Owen应助米热采纳,获得10
36秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5415118
求助须知:如何正确求助?哪些是违规求助? 4531802
关于积分的说明 14130408
捐赠科研通 4447300
什么是DOI,文献DOI怎么找? 2439655
邀请新用户注册赠送积分活动 1431765
关于科研通互助平台的介绍 1409365