M-Swin: Transformer-Based Multiscale Feature Fusion Change Detection Network Within Cropland for Remote Sensing Images

变更检测 遥感 计算机科学 比例(比率) 特征(语言学) 传感器融合 特征提取 图像融合 人工智能 模式识别(心理学) 地质学 图像(数学) 地图学 地理 语言学 哲学
作者
Jun Pan,Y. Bai,Qidi Shu,Zhuoer Zhang,Jiarui Hu,Mi Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:8
标识
DOI:10.1109/tgrs.2024.3374421
摘要

Remote sensing image change detection is extensively utilized in various applications in the field of remote sensing, particularly in the realm of cropland conservation, where it plays a critical role in protecting the agro-ecosystem and ensuring global food security. However, the progressive improvement in resolution and size of remote sensing imagery has led to a 'scale gap' challenge in the detection of small building changes in cropland areas. To address this challenge, an innovative multi-scale feature fusion change detection network (M-Swin) based on transformer using hierarchical windows is proposed. In order to obtain clearer edges and better separation of the change results, a novel saimese transformer encoder (MSW encoder) is proposed, which can better capture the change information in small building through hierarchical windows and fuse the multi-scale feature obtained from different windows. To effectively reduce missed and misdetected small-area of changing buildings, a novel bi-temporal image feature fusion module (BFFM) is proposed, which can enhance the features based on a priori guidance, thus improving the saliency of change regions. Additionally, a new remote sensing image change detection dataset for cropland, called LuojiaSET-CLCD, has been proposed. Experimentally demonstrates that M-Swin has good potential for highly accurate change detection of small buildings within cropland areas and outperforms several newly existing methods in three datasets (LEVIR, WHU-CD and LuojiaSET-CLCD). Our dataset will be publicly available at https://github.com/RSIIPAC/LuojiaSET-CLCD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱听歌的书雁完成签到,获得积分10
刚刚
刚刚
cheershuyang发布了新的文献求助30
刚刚
小蘑菇应助lmy采纳,获得10
2秒前
2秒前
等待诗柳完成签到,获得积分10
2秒前
我不是BOB完成签到,获得积分10
2秒前
愤怒的灵松完成签到,获得积分10
2秒前
伶俐小凝发布了新的文献求助10
2秒前
MrZ发布了新的文献求助10
2秒前
我是老大应助hhhhhqqqqq采纳,获得10
2秒前
3秒前
4秒前
4秒前
mxxxxx发布了新的文献求助10
5秒前
千逐发布了新的文献求助10
5秒前
无奈的小虾米完成签到,获得积分10
5秒前
小蘑菇应助olivia采纳,获得10
7秒前
清脆的土豆应助dsgcd采纳,获得10
7秒前
爆米花应助微笑梦旋采纳,获得10
7秒前
mix多咯完成签到,获得积分10
8秒前
9秒前
称心奇迹发布了新的文献求助10
9秒前
9秒前
9秒前
cheershuyang完成签到,获得积分10
10秒前
汉堡包应助粗暴的海豚采纳,获得10
10秒前
李爱国应助怡然的芯采纳,获得10
11秒前
smile完成签到,获得积分10
11秒前
12秒前
Luyao发布了新的文献求助10
12秒前
12秒前
13秒前
windwink发布了新的文献求助10
13秒前
13秒前
科研通AI2S应助Lucy采纳,获得10
14秒前
li发布了新的文献求助10
14秒前
ggbang完成签到,获得积分10
14秒前
随意了么发布了新的文献求助50
14秒前
Joker发布了新的文献求助10
15秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3232097
求助须知:如何正确求助?哪些是违规求助? 2879078
关于积分的说明 8208910
捐赠科研通 2546486
什么是DOI,文献DOI怎么找? 1376123
科研通“疑难数据库(出版商)”最低求助积分说明 647536
邀请新用户注册赠送积分活动 622709