M-Swin: Transformer-Based Multiscale Feature Fusion Change Detection Network Within Cropland for Remote Sensing Images

变更检测 遥感 计算机科学 比例(比率) 特征(语言学) 传感器融合 特征提取 图像融合 人工智能 模式识别(心理学) 地质学 图像(数学) 地图学 地理 语言学 哲学
作者
Jun Pan,Y. Bai,Qidi Shu,Zhuoer Zhang,Jiarui Hu,Mi Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:8
标识
DOI:10.1109/tgrs.2024.3374421
摘要

Remote sensing image change detection is extensively utilized in various applications in the field of remote sensing, particularly in the realm of cropland conservation, where it plays a critical role in protecting the agro-ecosystem and ensuring global food security. However, the progressive improvement in resolution and size of remote sensing imagery has led to a 'scale gap' challenge in the detection of small building changes in cropland areas. To address this challenge, an innovative multi-scale feature fusion change detection network (M-Swin) based on transformer using hierarchical windows is proposed. In order to obtain clearer edges and better separation of the change results, a novel saimese transformer encoder (MSW encoder) is proposed, which can better capture the change information in small building through hierarchical windows and fuse the multi-scale feature obtained from different windows. To effectively reduce missed and misdetected small-area of changing buildings, a novel bi-temporal image feature fusion module (BFFM) is proposed, which can enhance the features based on a priori guidance, thus improving the saliency of change regions. Additionally, a new remote sensing image change detection dataset for cropland, called LuojiaSET-CLCD, has been proposed. Experimentally demonstrates that M-Swin has good potential for highly accurate change detection of small buildings within cropland areas and outperforms several newly existing methods in three datasets (LEVIR, WHU-CD and LuojiaSET-CLCD). Our dataset will be publicly available at https://github.com/RSIIPAC/LuojiaSET-CLCD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
felix发布了新的文献求助10
刚刚
旺仔发布了新的文献求助20
1秒前
冯珂完成签到 ,获得积分10
3秒前
香蕉觅云应助难过的笑天采纳,获得10
3秒前
4秒前
conlensce完成签到,获得积分10
5秒前
5秒前
hs完成签到,获得积分10
7秒前
hyx发布了新的文献求助10
8秒前
郑同学完成签到,获得积分10
8秒前
11秒前
hazhuxixi完成签到,获得积分10
11秒前
12秒前
旺仔完成签到,获得积分20
12秒前
范户晓完成签到,获得积分10
12秒前
热情过客发布了新的文献求助20
15秒前
拓跋书芹完成签到,获得积分10
16秒前
随便发布了新的文献求助10
17秒前
17秒前
花痴的手套完成签到 ,获得积分10
18秒前
小乖完成签到 ,获得积分10
19秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
清秀的靖雁应助果实采纳,获得100
21秒前
wjn完成签到,获得积分10
22秒前
23秒前
财产发布了新的文献求助10
23秒前
xxxx完成签到,获得积分10
24秒前
tyy完成签到,获得积分10
25秒前
博修发布了新的文献求助30
25秒前
Damia完成签到,获得积分10
25秒前
快乐的蓝完成签到 ,获得积分10
25秒前
诗亭完成签到,获得积分10
27秒前
李健应助随便采纳,获得10
27秒前
27秒前
静静等待发布了新的文献求助10
28秒前
28秒前
在水一方应助热木采纳,获得10
28秒前
顺利毕业关注了科研通微信公众号
28秒前
28秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961075
求助须知:如何正确求助?哪些是违规求助? 3507282
关于积分的说明 11135478
捐赠科研通 3239777
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872379
科研通“疑难数据库(出版商)”最低求助积分说明 803150