How Generalizable Are Foundation Models When Applied to Different Demographic Groups and Settings?

基础(证据) 心理学 计算机科学 地理 考古
作者
Zhuxin Xiong,Xiaofei Wang,Yukun Zhou,Pearse A. Keane,Yih‐Chung Tham,Ya Xing Wang,Tien Yin Wong
标识
DOI:10.1056/aics2400497
摘要

RETFound is a retinal image–based foundational artificial intelligence (AI) model that can be fine-tuned to downstream tasks. However, its generalizability to Asian populations remains unclear. In this study, we fine-tuned RETFound on an Asian-specific dataset. We then evaluated the performance of RETFound versus a conventional Vision Transformer model (pretrained on ImageNet) in diagnosing glaucoma and coronary heart disease and predicting the 3-year risk of stroke in an Asian population. When fine-tuned on a "full" dataset, RETFound showed no significant improvement compared with a conventional Vision Transformer model (area under the curves [AUCs] of 0.863, 0.628, and 0.557 vs. 0.853, 0.621, and 0.543, respectively; all P≥0.2). Furthermore, in scenarios with limited training data (fine-tuned on ≤25% of the full dataset), RETFound showed a slight advantage (up to a maximum AUC increase of 0.03). However, these improvements were not statistically significant (all P≥0.2). These findings indicate the challenges foundational AI models face in adapting to diverse demographics, emphasizing the need for more diverse data in current foundation models and the importance of global collaboration on foundation model research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助Dr_zsc采纳,获得10
1秒前
1秒前
1秒前
含蓄的秋荷完成签到,获得积分10
2秒前
dpk发布了新的文献求助10
3秒前
4秒前
机灵静柏发布了新的文献求助10
5秒前
6秒前
xfye完成签到,获得积分20
7秒前
jiulin发布了新的文献求助10
7秒前
孙sy发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
慕青应助景清采纳,获得10
11秒前
小二郎应助笑哦采纳,获得10
11秒前
年轻若男发布了新的文献求助10
13秒前
宁夕完成签到 ,获得积分10
14秒前
MIAO发布了新的文献求助10
15秒前
15秒前
123完成签到 ,获得积分0
17秒前
了了完成签到,获得积分10
18秒前
jiulin完成签到,获得积分10
18秒前
20秒前
汉堡包应助科研通管家采纳,获得10
23秒前
深情安青应助科研通管家采纳,获得30
23秒前
小二郎应助科研通管家采纳,获得10
23秒前
充电宝应助科研通管家采纳,获得10
23秒前
ding应助科研通管家采纳,获得10
23秒前
FIN应助科研通管家采纳,获得30
23秒前
烟花应助科研通管家采纳,获得10
24秒前
奥特超曼应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
FIN应助科研通管家采纳,获得30
24秒前
NexusExplorer应助科研通管家采纳,获得10
24秒前
思源应助科研通管家采纳,获得10
24秒前
田様应助科研通管家采纳,获得10
24秒前
FIN应助科研通管家采纳,获得30
24秒前
24秒前
英姑应助科研通管家采纳,获得10
24秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993605
求助须知:如何正确求助?哪些是违规求助? 3534372
关于积分的说明 11265282
捐赠科研通 3274119
什么是DOI,文献DOI怎么找? 1806307
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712