Pinwheel-shaped Convolution and Scale-based Dynamic Loss for Infrared Small Target Detection

红外线的 比例(比率) 卷积(计算机科学) 计算机科学 物理 人工智能 光学 量子力学 人工神经网络
作者
Jing Yang,Shuangli Liu,Jingjun Wu,Xue Mei Su,Nan Hai,Xueli Huang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2412.16986
摘要

These recent years have witnessed that convolutional neural network (CNN)-based methods for detecting infrared small targets have achieved outstanding performance. However, these methods typically employ standard convolutions, neglecting to consider the spatial characteristics of the pixel distribution of infrared small targets. Therefore, we propose a novel pinwheel-shaped convolution (PConv) as a replacement for standard convolutions in the lower layers of the backbone network. PConv better aligns with the pixel Gaussian spatial distribution of dim small targets, enhances feature extraction, significantly increases the receptive field, and introduces only a minimal increase in parameters. Additionally, while recent loss functions combine scale and location losses, they do not adequately account for the varying sensitivity of these losses across different target scales, limiting detection performance on dim-small targets. To overcome this, we propose a scale-based dynamic (SD) Loss that dynamically adjusts the influence of scale and location losses based on target size, improving the network's ability to detect targets of varying scales. We construct a new benchmark, SIRST-UAVB, which is the largest and most challenging dataset to date for real-shot single-frame infrared small target detection. Lastly, by integrating PConv and SD Loss into the latest small target detection algorithms, we achieved significant performance improvements on IRSTD-1K and our SIRST-UAVB dataset, validating the effectiveness and generalizability of our approach. Code -- https://github.com/JN-Yang/PConv-SDloss-Data
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gaohui发布了新的文献求助10
3秒前
化工人完成签到,获得积分10
5秒前
6秒前
化工人发布了新的文献求助10
7秒前
闲庭完成签到,获得积分10
11秒前
王红完成签到,获得积分10
11秒前
及禾应助无辜不言采纳,获得10
12秒前
12秒前
13秒前
清都山水郎完成签到 ,获得积分10
13秒前
论文顺利完成签到,获得积分10
15秒前
16秒前
16秒前
闲庭发布了新的文献求助10
17秒前
金平卢仙发布了新的文献求助10
18秒前
19秒前
19秒前
20秒前
晓晓发布了新的文献求助10
21秒前
难过板栗完成签到 ,获得积分10
21秒前
22秒前
四季夏目发布了新的文献求助10
22秒前
柔弱吉利蛋完成签到,获得积分10
23秒前
666发布了新的文献求助10
24秒前
藤原拓海完成签到,获得积分10
25秒前
29秒前
29秒前
轻松羽毛完成签到 ,获得积分10
29秒前
qian完成签到,获得积分10
29秒前
昭荃完成签到 ,获得积分0
31秒前
33秒前
33秒前
nulinuli完成签到 ,获得积分10
34秒前
开心超人发布了新的文献求助10
34秒前
小章鱼完成签到,获得积分10
35秒前
ZhouZhou完成签到,获得积分10
35秒前
lion发布了新的文献求助10
35秒前
idynamics发布了新的文献求助10
35秒前
热心不凡完成签到,获得积分10
37秒前
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966124
求助须知:如何正确求助?哪些是违规求助? 3511501
关于积分的说明 11158638
捐赠科研通 3246146
什么是DOI,文献DOI怎么找? 1793292
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804324