Pinwheel-shaped Convolution and Scale-based Dynamic Loss for Infrared Small Target Detection

红外线的 比例(比率) 卷积(计算机科学) 计算机科学 物理 人工智能 光学 量子力学 人工神经网络
作者
Jing Yang,Shuangli Liu,Jingjun Wu,Xue Mei Su,Nan Hai,Xueli Huang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2412.16986
摘要

These recent years have witnessed that convolutional neural network (CNN)-based methods for detecting infrared small targets have achieved outstanding performance. However, these methods typically employ standard convolutions, neglecting to consider the spatial characteristics of the pixel distribution of infrared small targets. Therefore, we propose a novel pinwheel-shaped convolution (PConv) as a replacement for standard convolutions in the lower layers of the backbone network. PConv better aligns with the pixel Gaussian spatial distribution of dim small targets, enhances feature extraction, significantly increases the receptive field, and introduces only a minimal increase in parameters. Additionally, while recent loss functions combine scale and location losses, they do not adequately account for the varying sensitivity of these losses across different target scales, limiting detection performance on dim-small targets. To overcome this, we propose a scale-based dynamic (SD) Loss that dynamically adjusts the influence of scale and location losses based on target size, improving the network's ability to detect targets of varying scales. We construct a new benchmark, SIRST-UAVB, which is the largest and most challenging dataset to date for real-shot single-frame infrared small target detection. Lastly, by integrating PConv and SD Loss into the latest small target detection algorithms, we achieved significant performance improvements on IRSTD-1K and our SIRST-UAVB dataset, validating the effectiveness and generalizability of our approach. Code -- https://github.com/JN-Yang/PConv-SDloss-Data
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助闾丘明雪采纳,获得10
2秒前
调皮甜瓜完成签到,获得积分10
2秒前
慕青应助G1997采纳,获得10
4秒前
9秒前
11秒前
12秒前
槐序深巷发布了新的文献求助10
14秒前
我不李姐发布了新的文献求助10
15秒前
kylin发布了新的文献求助30
17秒前
18秒前
cyy发布了新的文献求助10
19秒前
20秒前
21秒前
bkagyin应助啦啦啦采纳,获得10
22秒前
22秒前
闾丘明雪发布了新的文献求助10
23秒前
23秒前
奇拉维特发布了新的文献求助10
23秒前
立军发布了新的文献求助10
24秒前
24秒前
槐序深巷完成签到,获得积分10
25秒前
水心发布了新的文献求助30
26秒前
20224273完成签到 ,获得积分20
27秒前
傲娇黄豆完成签到 ,获得积分10
28秒前
DrLee发布了新的文献求助20
29秒前
30秒前
科研通AI2S应助ty采纳,获得10
33秒前
赘婿应助ty采纳,获得10
33秒前
科研通AI2S应助ty采纳,获得10
33秒前
利好完成签到 ,获得积分10
34秒前
365完成签到,获得积分10
35秒前
大灰狼发布了新的文献求助10
35秒前
JamesPei应助科研通管家采纳,获得10
35秒前
淡然平灵应助科研通管家采纳,获得10
36秒前
xzy998应助科研通管家采纳,获得10
36秒前
刘学完成签到,获得积分20
36秒前
orixero应助科研通管家采纳,获得10
36秒前
淡然平灵应助科研通管家采纳,获得10
36秒前
田様应助科研通管家采纳,获得10
36秒前
小蘑菇应助科研通管家采纳,获得50
36秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343799
求助须知:如何正确求助?哪些是违规求助? 2970866
关于积分的说明 8645553
捐赠科研通 2650942
什么是DOI,文献DOI怎么找? 1451565
科研通“疑难数据库(出版商)”最低求助积分说明 672145
邀请新用户注册赠送积分活动 661681