已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Impact of Slope Cutoff Factor on Soil Erosion Estimates: A Hilltop Mine‐Based Comparative Geospatial Study

地理空间分析 腐蚀 切断 地质学 环境科学 水文学(农业) 土壤科学 地貌学 岩土工程 遥感 物理 量子力学
作者
Thappitla Srinivas Rohit,Vasanta Govind Kumar Villuri
出处
期刊:Land Degradation & Development [Wiley]
标识
DOI:10.1002/ldr.5478
摘要

ABSTRACT The task of soil erosion estimation received a significant push by integrating remote sensing and geographical information systems (GIS) with the Revised Universal Soil Loss Equation (RUSLE) in the early 1990s due to its ease of applicability. The Topographic (LS) factor played a quintessential role in soil loss determination, especially for undulating regions. In most worldwide soil erosion studies, the topographic factor extracted from the Digital Elevation Model (DEM) using “LS equations” failed to account for the varying slopes before the material joins a stream or a river. In this study, the slope length (L) and slope steepness factor (S) derived without and with the slope cutoff factor are compared and analyzed for a hilltop mine. The results reflect that the LS factor and, ultimately, soil erosion are over‐estimated owing to the absence of any limits on the slope length (L) factor in undulating terrains when used conventionally in a GIS environment. The mean soil erosion estimated with slope cutoff factor is 252.26 ton ha −1 year −1 , whereas 332.81 ton ha −1 year −1 in the conventional application of the same LS equation. The overestimation of soil erosion was reduced by 35% as per the volume‐based validation study. Thus, the study proves the usefulness of the slope cutoff factor, which, to date, has mostly been neglected in soil loss research and soil erosion studies for undulating terrains. The pattern of soil erosion also highlights the negating impact of vegetation on steep slopes, cementing their role as Nature based Solution (NbS) for soil erosion by dynamic landscapes like Mines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhouxiuman完成签到,获得积分10
2秒前
深情安青应助田静然采纳,获得10
3秒前
嘻嘻嘻发布了新的文献求助30
5秒前
迟大猫应助hangzhen采纳,获得10
6秒前
慢慢发布了新的文献求助10
7秒前
7秒前
9秒前
浮云发布了新的文献求助10
11秒前
12秒前
15秒前
迟大猫应助sun采纳,获得10
15秒前
17秒前
111发布了新的文献求助10
17秒前
65neko发布了新的文献求助10
17秒前
ambernameswu完成签到 ,获得积分20
18秒前
18秒前
研友_08oErn完成签到,获得积分10
19秒前
嘻嘻嘻完成签到,获得积分10
19秒前
科目三应助feifanyang采纳,获得10
20秒前
充电宝应助Miki采纳,获得10
21秒前
田静然发布了新的文献求助10
21秒前
wzn发布了新的文献求助10
21秒前
TMUEH_FCL发布了新的文献求助10
23秒前
23秒前
24秒前
道元完成签到,获得积分10
24秒前
连长完成签到,获得积分10
27秒前
pbl关注了科研通微信公众号
27秒前
28秒前
明理雪糕完成签到,获得积分10
29秒前
5wei完成签到,获得积分10
30秒前
橙子发布了新的文献求助10
32秒前
33秒前
lexi发布了新的文献求助30
34秒前
不懈奋进应助Cassiel采纳,获得30
35秒前
36秒前
37秒前
Miki发布了新的文献求助10
37秒前
充电宝应助傻子与白痴采纳,获得10
37秒前
41秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526247
求助须知:如何正确求助?哪些是违规求助? 3106663
关于积分的说明 9281184
捐赠科研通 2804184
什么是DOI,文献DOI怎么找? 1539352
邀请新用户注册赠送积分活动 716529
科研通“疑难数据库(出版商)”最低求助积分说明 709495