Analysis of Cardiac Arrhythmias Based on ResNet-ICBAM-2DCNN Dual-Channel Feature Fusion

模式识别(心理学) 人工智能 计算机科学 特征提取 阈值 卷积神经网络 心律失常 特征(语言学) 降噪 医学 心脏病学 语言学 图像(数学) 哲学 心房颤动
作者
Chuanjiang Wang,Junhao Ma,Guohui Wei,Xiujuan Sun
出处
期刊:Sensors [MDPI AG]
卷期号:25 (3): 661-661
标识
DOI:10.3390/s25030661
摘要

Cardiovascular disease (CVD) poses a significant challenge to global health, with cardiac arrhythmia representing one of its most prevalent manifestations. The timely and precise classification of arrhythmias is critical for the effective management of CVD. This study introduces an innovative approach to enhancing arrhythmia classification accuracy through advanced Electrocardiogram (ECG) signal processing. We propose a dual-channel feature fusion strategy designed to enhance the precision and objectivity of ECG analysis. Initially, we apply an Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) and enhanced wavelet thresholding for robust noise reduction. Subsequently, in the primary channel, region of interest features are emphasized using a ResNet-ICBAM network model for feature extraction. In parallel, the secondary channel transforms 1D ECG signals into Gram angular difference field (GADF), Markov transition field (MTF), and recurrence plot (RP) representations, which are then subjected to two-dimensional convolutional neural network (2D-CNN) feature extraction. Post-extraction, the features from both channels are fused and classified. When evaluated on the MIT-BIH database, our method achieves a classification accuracy of 97.80%. Compared to other methods, our approach of two-channel feature fusion has a significant improvement in overall performance by adding a 2D convolutional network. This methodology represents a substantial advancement in ECG signal processing, offering significant potential for clinical applications and improving patient care efficiency and accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助科研通管家采纳,获得10
刚刚
田様应助科研通管家采纳,获得10
刚刚
无花果应助科研通管家采纳,获得20
刚刚
大模型应助科研通管家采纳,获得10
刚刚
脑洞疼应助科研通管家采纳,获得20
刚刚
阿?发布了新的文献求助20
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
1秒前
2秒前
4秒前
冠希完成签到,获得积分20
6秒前
lihaha完成签到,获得积分10
6秒前
7秒前
Adc应助aub采纳,获得10
8秒前
天天快乐应助学习猴采纳,获得10
9秒前
twq发布了新的文献求助10
9秒前
烟花应助YUAN采纳,获得10
9秒前
传奇3应助学习猴采纳,获得10
11秒前
彭于晏应助纯情的馒头采纳,获得10
14秒前
LLLnna完成签到,获得积分10
15秒前
ren完成签到,获得积分10
16秒前
16秒前
可耐的冰巧完成签到,获得积分10
17秒前
17秒前
22秒前
23秒前
风清扬发布了新的文献求助10
23秒前
君知行发布了新的文献求助10
23秒前
24秒前
26秒前
小刘同学发布了新的文献求助10
27秒前
KCC发布了新的文献求助10
27秒前
27秒前
科研通AI2S应助XiaoZhu采纳,获得10
28秒前
29秒前
29秒前
量子星尘发布了新的文献求助10
30秒前
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736061
求助须知:如何正确求助?哪些是违规求助? 5364012
关于积分的说明 15332114
捐赠科研通 4880090
什么是DOI,文献DOI怎么找? 2622504
邀请新用户注册赠送积分活动 1571528
关于科研通互助平台的介绍 1528348