Analysis of Cardiac Arrhythmias Based on ResNet-ICBAM-2DCNN Dual-Channel Feature Fusion

模式识别(心理学) 人工智能 计算机科学 特征提取 阈值 卷积神经网络 心律失常 特征(语言学) 降噪 医学 心脏病学 语言学 图像(数学) 哲学 心房颤动
作者
Chuanjiang Wang,Junhao Ma,Guohui Wei,Xiujuan Sun
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:25 (3): 661-661
标识
DOI:10.3390/s25030661
摘要

Cardiovascular disease (CVD) poses a significant challenge to global health, with cardiac arrhythmia representing one of its most prevalent manifestations. The timely and precise classification of arrhythmias is critical for the effective management of CVD. This study introduces an innovative approach to enhancing arrhythmia classification accuracy through advanced Electrocardiogram (ECG) signal processing. We propose a dual-channel feature fusion strategy designed to enhance the precision and objectivity of ECG analysis. Initially, we apply an Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) and enhanced wavelet thresholding for robust noise reduction. Subsequently, in the primary channel, region of interest features are emphasized using a ResNet-ICBAM network model for feature extraction. In parallel, the secondary channel transforms 1D ECG signals into Gram angular difference field (GADF), Markov transition field (MTF), and recurrence plot (RP) representations, which are then subjected to two-dimensional convolutional neural network (2D-CNN) feature extraction. Post-extraction, the features from both channels are fused and classified. When evaluated on the MIT-BIH database, our method achieves a classification accuracy of 97.80%. Compared to other methods, our approach of two-channel feature fusion has a significant improvement in overall performance by adding a 2D convolutional network. This methodology represents a substantial advancement in ECG signal processing, offering significant potential for clinical applications and improving patient care efficiency and accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗒嗒嗒发布了新的文献求助10
2秒前
文文发布了新的文献求助10
2秒前
博博大佬完成签到,获得积分10
2秒前
艾妮吗发布了新的文献求助10
2秒前
2秒前
xiaoxiaozhu完成签到,获得积分10
3秒前
Jia发布了新的文献求助20
3秒前
桐桐应助教生物的杨教授采纳,获得10
4秒前
博博大佬发布了新的文献求助10
4秒前
嘿嘿嘿发布了新的文献求助10
5秒前
xiaoxiaozhu发布了新的文献求助10
6秒前
8秒前
Bao发布了新的文献求助10
8秒前
巴卫完成签到,获得积分10
8秒前
木木水发布了新的文献求助10
8秒前
简单发布了新的文献求助10
9秒前
ding应助li采纳,获得10
9秒前
还没想好完成签到,获得积分10
10秒前
珂珂完成签到,获得积分10
11秒前
尘扬完成签到,获得积分10
11秒前
smottom应助pwq采纳,获得10
11秒前
12秒前
可靠盼旋发布了新的文献求助10
12秒前
断了的弦完成签到,获得积分10
12秒前
13秒前
13秒前
欢呼凡英完成签到,获得积分10
14秒前
罐罐完成签到,获得积分10
14秒前
大个应助嘿嘿嘿采纳,获得10
14秒前
16秒前
16秒前
17秒前
17秒前
哈哈哈666发布了新的文献求助10
17秒前
充电宝应助个性的帽子采纳,获得10
17秒前
Alvin完成签到 ,获得积分10
17秒前
sjz发布了新的文献求助10
17秒前
我也发布了新的文献求助10
18秒前
小小王完成签到 ,获得积分10
19秒前
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512151
关于积分的说明 11161937
捐赠科研通 3246996
什么是DOI,文献DOI怎么找? 1793640
邀请新用户注册赠送积分活动 874520
科研通“疑难数据库(出版商)”最低求助积分说明 804421