清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Patient‐ and fraction‐specific magnetic resonance volume reconstruction from orthogonal images with generative adversarial networks

等中心 人口 磁共振成像 均方误差 人工智能 基本事实 计算机科学 核医学 数学 模式识别(心理学) 统计 放射科 医学 成像体模 环境卫生
作者
Hideaki Hirashima,Dejun Zhou,Nobutaka Mukumoto,Haruo Inokuchi,Nobunari Hamaura,Mutsumi Yamagishi,Mai Sakagami,Naoki Mukumoto,Mitsuhiro Nakamura,Keiko Shibuya
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17668
摘要

Abstract Background Although deep learning (DL) methods for reconstructing 3D magnetic resonance (MR) volumes from 2D MR images yield promising results, they require large amounts of training data to perform effectively. To overcome this challenge, fine‐tuning—a transfer learning technique particularly effective for small datasets—presents a robust solution for developing personalized DL models. Purpose A 2D to 3D conditional generative adversarial network (GAN) model with a patient‐ and fraction‐specific fine‐tuning workflow was developed to reconstruct synthetic 3D MR volumes using orthogonal 2D MR images for online dose adaptation. Methods A total of 2473 3D MR volumes were collected from 43 patients. The training and test datasets were separated into 34 and 9 patients, respectively. All patients underwent MR‐guided adaptive radiotherapy using the same imaging protocol. The population data contained 2047 3D MR volumes from the training dataset. Population data were used to train the population‐based GAN model. For each fraction of the remaining patients, the population model was fine‐tuned with the 3D MR volumes acquired before beam irradiation of the fraction, named the fine‐tuned model. The performance of the fine‐tuned model was tested using the 3D MR volume acquired immediately after the beam delivery of the fraction. The model's input was a pair of axial and sagittal MR images at the isocenter level, and the output was a 3D MR volume. Model performance was evaluated using the structural similarity index measure (SSIM), peak signal‐to‐noise ratio (PSNR), root mean square error (RMSE), and mean absolute error (MAE). Moreover, the prostate, bladder, and rectum in the predicted MR images were manually segmented. To assess geometric accuracy, the 2D Dice Similarity Coefficient (DSC) and 2D Hausdorff Distance (HD) were calculated. Results A total of 84 3D MR volumes were included in the performance testing. The mean ± standard deviation (SD) of SSIM, PSNR, RMSE, and MAE were 0.64 ± 0.10, 93.9 ± 1.5 dB, 0.050 ± 0.009, and 0.036 ± 0.007 for the population model and 0.72 ± 0.09, 96.2 ± 1.8 dB, 0.041 ± 0.007, and 0.028 ± 0.006 for the fine‐tuned model, respectively. The image quality of the fine‐tuned model was significantly better than that of the population model ( p < 0.05). The mean ± SD of DSC and HD of the population model were 0.79 ± 0.08 and 1.70 ± 2.35 mm for prostate, 0.81 ± 0.10 and 2.75 ± 1.53 mm for bladder, and 0.72 ± 0.08 and 1.93 ± 0.59 mm for rectum. Contrarily, the mean ± SD of DSC and HD of the fine‐tuned model were 0.83 ± 0.06 and 1.29 ± 0.77 mm for prostate, 0.85 ± 0.07 and 2.16 ± 1.09 mm for bladder, and 0.77 ± 0.08 and 1.57 ± 0.52 mm for rectum. The geometric accuracy of the fine‐tuned model was significantly improved than that of the population model ( p < 0.05). Conclusion By employing a patient‐ and fraction‐specific fine‐tuning approach, the GAN model demonstrated promising accuracy despite limited data availability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
30秒前
42秒前
量子星尘发布了新的文献求助10
45秒前
ding应助甜甜的又柔采纳,获得10
54秒前
1分钟前
jokerhoney完成签到,获得积分0
1分钟前
jokerhoney完成签到,获得积分0
1分钟前
1分钟前
sonny发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
李爱国应助预付费采纳,获得10
1分钟前
1分钟前
1分钟前
乔凌云发布了新的文献求助10
1分钟前
万能图书馆应助乔凌云采纳,获得10
1分钟前
顾矜应助甜甜的又柔采纳,获得10
2分钟前
预付费完成签到,获得积分10
2分钟前
yang关注了科研通微信公众号
2分钟前
落寞的又菡完成签到,获得积分10
2分钟前
jialin完成签到 ,获得积分10
2分钟前
yang发布了新的文献求助10
2分钟前
2分钟前
Able完成签到,获得积分10
2分钟前
3分钟前
简单应助科研通管家采纳,获得10
3分钟前
隐形曼青应助科研通管家采纳,获得10
3分钟前
无极微光应助科研通管家采纳,获得20
3分钟前
happyxuexi完成签到,获得积分10
3分钟前
平头张完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
tt完成签到,获得积分10
4分钟前
迷你的靖雁完成签到,获得积分10
4分钟前
谦让小熊猫完成签到,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Processing of reusable surgical textiles for use in health care facilities 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5802079
求助须知:如何正确求助?哪些是违规求助? 5822839
关于积分的说明 15505815
捐赠科研通 4927944
什么是DOI,文献DOI怎么找? 2652949
邀请新用户注册赠送积分活动 1600002
关于科研通互助平台的介绍 1554846