已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Patient‐ and fraction‐specific magnetic resonance volume reconstruction from orthogonal images with generative adversarial networks

等中心 人口 磁共振成像 均方误差 人工智能 基本事实 计算机科学 核医学 数学 模式识别(心理学) 统计 放射科 医学 成像体模 环境卫生
作者
Hideaki Hirashima,Dejun Zhou,Nobutaka Mukumoto,Haruo Inokuchi,Nobunari Hamaura,Mutsumi Yamagishi,Mai Sakagami,Naoki Mukumoto,Mitsuhiro Nakamura,Keiko Shibuya
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17668
摘要

Abstract Background Although deep learning (DL) methods for reconstructing 3D magnetic resonance (MR) volumes from 2D MR images yield promising results, they require large amounts of training data to perform effectively. To overcome this challenge, fine‐tuning—a transfer learning technique particularly effective for small datasets—presents a robust solution for developing personalized DL models. Purpose A 2D to 3D conditional generative adversarial network (GAN) model with a patient‐ and fraction‐specific fine‐tuning workflow was developed to reconstruct synthetic 3D MR volumes using orthogonal 2D MR images for online dose adaptation. Methods A total of 2473 3D MR volumes were collected from 43 patients. The training and test datasets were separated into 34 and 9 patients, respectively. All patients underwent MR‐guided adaptive radiotherapy using the same imaging protocol. The population data contained 2047 3D MR volumes from the training dataset. Population data were used to train the population‐based GAN model. For each fraction of the remaining patients, the population model was fine‐tuned with the 3D MR volumes acquired before beam irradiation of the fraction, named the fine‐tuned model. The performance of the fine‐tuned model was tested using the 3D MR volume acquired immediately after the beam delivery of the fraction. The model's input was a pair of axial and sagittal MR images at the isocenter level, and the output was a 3D MR volume. Model performance was evaluated using the structural similarity index measure (SSIM), peak signal‐to‐noise ratio (PSNR), root mean square error (RMSE), and mean absolute error (MAE). Moreover, the prostate, bladder, and rectum in the predicted MR images were manually segmented. To assess geometric accuracy, the 2D Dice Similarity Coefficient (DSC) and 2D Hausdorff Distance (HD) were calculated. Results A total of 84 3D MR volumes were included in the performance testing. The mean ± standard deviation (SD) of SSIM, PSNR, RMSE, and MAE were 0.64 ± 0.10, 93.9 ± 1.5 dB, 0.050 ± 0.009, and 0.036 ± 0.007 for the population model and 0.72 ± 0.09, 96.2 ± 1.8 dB, 0.041 ± 0.007, and 0.028 ± 0.006 for the fine‐tuned model, respectively. The image quality of the fine‐tuned model was significantly better than that of the population model ( p < 0.05). The mean ± SD of DSC and HD of the population model were 0.79 ± 0.08 and 1.70 ± 2.35 mm for prostate, 0.81 ± 0.10 and 2.75 ± 1.53 mm for bladder, and 0.72 ± 0.08 and 1.93 ± 0.59 mm for rectum. Contrarily, the mean ± SD of DSC and HD of the fine‐tuned model were 0.83 ± 0.06 and 1.29 ± 0.77 mm for prostate, 0.85 ± 0.07 and 2.16 ± 1.09 mm for bladder, and 0.77 ± 0.08 and 1.57 ± 0.52 mm for rectum. The geometric accuracy of the fine‐tuned model was significantly improved than that of the population model ( p < 0.05). Conclusion By employing a patient‐ and fraction‐specific fine‐tuning approach, the GAN model demonstrated promising accuracy despite limited data availability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助fan采纳,获得10
刚刚
研友_VZG7GZ应助疯狂的鸣凤采纳,获得10
1秒前
科研通AI5应助U87采纳,获得30
4秒前
layers发布了新的文献求助10
6秒前
学者风范完成签到 ,获得积分10
10秒前
蓦然回首发布了新的文献求助10
12秒前
jojo完成签到 ,获得积分10
12秒前
13秒前
16秒前
17秒前
科研通AI5应助雯雯稳稳的采纳,获得10
18秒前
乔治韦斯莱完成签到 ,获得积分10
19秒前
small_LL完成签到,获得积分10
21秒前
WEIWEI发布了新的文献求助10
22秒前
小南完成签到,获得积分20
25秒前
高兴的海白完成签到 ,获得积分10
27秒前
科研通AI2S应助小南采纳,获得10
31秒前
32秒前
思源应助wdw2501采纳,获得10
34秒前
longtengfei发布了新的文献求助30
37秒前
38秒前
良良丸发布了新的文献求助10
39秒前
43秒前
45秒前
mmyhn发布了新的文献求助10
47秒前
项目多多完成签到,获得积分10
47秒前
shweah2003完成签到,获得积分10
49秒前
51秒前
科研通AI5应助longtengfei采纳,获得10
51秒前
雯雯稳稳的完成签到,获得积分20
54秒前
雨雨爱薯条完成签到 ,获得积分10
57秒前
57秒前
路边一颗小草完成签到 ,获得积分20
58秒前
zhangdoc完成签到,获得积分10
59秒前
李爱国应助卑微小研采纳,获得10
1分钟前
zhang完成签到 ,获得积分10
1分钟前
老孟发布了新的文献求助10
1分钟前
lx完成签到,获得积分10
1分钟前
大壮完成签到,获得积分10
1分钟前
不辣的完成签到 ,获得积分10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538829
求助须知:如何正确求助?哪些是违规求助? 3116553
关于积分的说明 9325913
捐赠科研通 2814530
什么是DOI,文献DOI怎么找? 1546861
邀请新用户注册赠送积分活动 720659
科研通“疑难数据库(出版商)”最低求助积分说明 712145