亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The early warning method of Dagangshan high-arch dam risk based on the time series prediction of the multivariate monitoring data

多元统计 拱坝 预警系统 时间序列 系列(地层学) 多元分析 拱门 计算机科学 数据挖掘 法律工程学 心理学 计量经济学 工程类 地质学 数学 机器学习 结构工程 电信 古生物学
作者
Ke Ma,Zewei Yuan,Zhiliang Gao,Umberto Pensato,Ke Hu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241306989
摘要

In areas with high seismic activity, stability analysis of high-arch dams becomes essential for the safe functioning of the structure. Measured displacement is a common approach used in risk assessment techniques to evaluate the state of the dam; however, there are very limited studies on forecasting and early warning methods involving future unknown data. In light of this, this study proposes a novel early warning framework for high-arch dams based on displacement and stress prediction. First, the radial displacements, along with bolt stress measured from the field were processed to remove any abnormal data before being normalized. Second, the future displacement and stress at different measurement points were predicted using three time-series prediction models (bidirectional long short-term memory network, echo state network, and Transformer) to obtain the data closest to the true value. The overload (by numerical simulation) and extreme conditions (Luding earthquake, Ms = 6.8) methods were then combined to determine the warning threshold at each measurement point. Finally, based on the principle of Bayesian probability, the Dam Risk Index was calculated based on the displacement and stress at all measurement points. This framework considers the interdependence between multiple monitoring factors, avoids the subjective complexity of the weight determination of each factor, prevents the influence of experience and subjective judgment, and makes the decision-making process more objective. This study provides a more reasonable solution for monitoring and controlling dam engineering safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
迷茫的一代完成签到,获得积分10
22秒前
56秒前
依然At发布了新的文献求助10
1分钟前
天天快乐应助Iso采纳,获得10
1分钟前
依然At完成签到,获得积分10
1分钟前
1分钟前
77完成签到 ,获得积分10
2分钟前
俊逸吐司完成签到 ,获得积分10
2分钟前
2分钟前
Iso发布了新的文献求助10
2分钟前
2分钟前
3分钟前
oleskarabach发布了新的文献求助10
3分钟前
纳兰若微应助oleskarabach采纳,获得10
4分钟前
希望天下0贩的0应助Iso采纳,获得10
4分钟前
4分钟前
4分钟前
Iso发布了新的文献求助10
4分钟前
Iso发布了新的文献求助30
5分钟前
5分钟前
CodeCraft应助科研通管家采纳,获得10
5分钟前
5分钟前
7分钟前
7分钟前
zyj发布了新的文献求助10
7分钟前
huzi完成签到,获得积分10
7分钟前
7分钟前
8分钟前
8分钟前
8分钟前
Chen发布了新的文献求助10
8分钟前
8分钟前
wanci应助Chen采纳,获得10
8分钟前
9分钟前
爆米花应助轻松的贞采纳,获得10
9分钟前
9分钟前
切菜的猪发布了新的文献求助30
9分钟前
9分钟前
切菜的猪完成签到,获得积分20
9分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Association Between Clozapine Exposure and Risk of Hematologic Malignancies in Veterans With Schizophrenia 850
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3298744
求助须知:如何正确求助?哪些是违规求助? 2933754
关于积分的说明 8464774
捐赠科研通 2606875
什么是DOI,文献DOI怎么找? 1423470
科研通“疑难数据库(出版商)”最低求助积分说明 661593
邀请新用户注册赠送积分活动 645188