The early warning method of Dagangshan high-arch dam risk based on the time series prediction of the multivariate monitoring data

多元统计 拱坝 预警系统 时间序列 系列(地层学) 多元分析 拱门 计算机科学 数据挖掘 法律工程学 心理学 计量经济学 工程类 地质学 数学 机器学习 结构工程 电信 古生物学
作者
Ke Ma,Zewei Yuan,Zhiliang Gao,Umberto Pensato,Ke Hu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:1
标识
DOI:10.1177/14759217241306989
摘要

In areas with high seismic activity, stability analysis of high-arch dams becomes essential for the safe functioning of the structure. Measured displacement is a common approach used in risk assessment techniques to evaluate the state of the dam; however, there are very limited studies on forecasting and early warning methods involving future unknown data. In light of this, this study proposes a novel early warning framework for high-arch dams based on displacement and stress prediction. First, the radial displacements, along with bolt stress measured from the field were processed to remove any abnormal data before being normalized. Second, the future displacement and stress at different measurement points were predicted using three time-series prediction models (bidirectional long short-term memory network, echo state network, and Transformer) to obtain the data closest to the true value. The overload (by numerical simulation) and extreme conditions (Luding earthquake, Ms = 6.8) methods were then combined to determine the warning threshold at each measurement point. Finally, based on the principle of Bayesian probability, the Dam Risk Index was calculated based on the displacement and stress at all measurement points. This framework considers the interdependence between multiple monitoring factors, avoids the subjective complexity of the weight determination of each factor, prevents the influence of experience and subjective judgment, and makes the decision-making process more objective. This study provides a more reasonable solution for monitoring and controlling dam engineering safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白完成签到,获得积分10
刚刚
HZZ完成签到,获得积分10
刚刚
1秒前
白白完成签到 ,获得积分10
1秒前
大模型应助平常的勒采纳,获得10
1秒前
爆米花应助ln采纳,获得10
1秒前
健忘惜海关注了科研通微信公众号
1秒前
2秒前
2秒前
小娄娄娄发布了新的文献求助10
3秒前
3秒前
马立奥奥完成签到,获得积分10
3秒前
4秒前
dtf发布了新的文献求助10
4秒前
卡莎完成签到,获得积分10
4秒前
共享精神应助古月博士采纳,获得10
4秒前
6秒前
NexusExplorer应助可靠月亮采纳,获得10
6秒前
pqy发布了新的文献求助10
7秒前
7秒前
bliss发布了新的文献求助30
7秒前
8秒前
酷波er应助卡莎采纳,获得10
8秒前
木子发布了新的文献求助10
8秒前
深情安青应助tuzhihong采纳,获得10
8秒前
9秒前
小鱼完成签到 ,获得积分10
10秒前
1111应助乘风的法袍采纳,获得10
12秒前
YCPing发布了新的文献求助10
13秒前
鲍binyu发布了新的文献求助20
14秒前
安静的臻发布了新的文献求助10
14秒前
3210592发布了新的文献求助10
16秒前
完美世界应助多多采纳,获得10
16秒前
16秒前
佳佳完成签到,获得积分10
17秒前
深情安青应助无风海采纳,获得10
17秒前
佳佳发布了新的文献求助10
21秒前
kc135完成签到,获得积分10
21秒前
21秒前
22秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961294
求助须知:如何正确求助?哪些是违规求助? 3507579
关于积分的说明 11136907
捐赠科研通 3240039
什么是DOI,文献DOI怎么找? 1790707
邀请新用户注册赠送积分活动 872450
科研通“疑难数据库(出版商)”最低求助积分说明 803255