Meta-Learning based Semi-supervised Change Detection in Remote Sensing Images

遥感 变更检测 计算机科学 人工智能 计算机视觉 地质学
作者
Yi Tang,Liyi Zhang,Wuxia Zhang,Zuo Jiang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2025.3527483
摘要

Semi-supervised change detection methods with consistency regularization, which overcome the lack of labeled samples by using unlabeled samples and enforcing consistent predictions under weak perturbations. However, current consistency regularization methods lack randomness in their perturbation settings and treat all samples uniformly, limiting the model's ability to leverage sample diversity to improve generalization. In contrast, meta-learning methods shift focus from individual samples to learning patterns across similar tasks, thereby enhancing information efficiency and model generalization. Inspired by these principles, we propose a Meta-Learning-based Semi-supervised Change Detection (MLSCD) method for remote sensing images, which aims to explore and leverage meta-learning methods to enhance the generalization capabilities of consistency regularization-based semi-supervised change detection. First, we set the degree of weak perturbation and the combination of different types of perturbations as random parameters to generate diverse and randomized weak perturbations. Second, we redefine consistency regularization-based semi-supervised change detection from a meta-learning perspective, which learns patterns from diverse perturbation tasks to improve sample utilization efficiency, thereby enhancing the model's generalization capability. Third, we balance accuracy and efficiency by using AdamW for cross-task updates in the outer loop and SGD for single-task optimization in the inner loop, which experimental results demonstrate is an ideal method for applying meta-learning to remote sensing change detection. Finally, the superiority of the proposed method is validated on two datasets. The extensive experimental results demonstrate the superior performance of the proposed method compared to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李文强发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
zhaojiantgu完成签到 ,获得积分10
3秒前
3秒前
3秒前
ysx发布了新的文献求助10
3秒前
合适含蕾完成签到,获得积分10
5秒前
JamesBill发布了新的文献求助10
6秒前
wbr完成签到,获得积分20
6秒前
饱满若灵发布了新的文献求助10
7秒前
Ann发布了新的文献求助30
7秒前
8秒前
合适含蕾发布了新的文献求助10
8秒前
zhangyujin完成签到,获得积分10
9秒前
zcydbttj2011发布了新的文献求助10
10秒前
Jackson完成签到,获得积分10
11秒前
11秒前
传奇3应助wufan采纳,获得10
13秒前
luluan完成签到,获得积分10
14秒前
科研狗发布了新的文献求助10
14秒前
张张张完成签到,获得积分10
14秒前
missjucinda完成签到,获得积分10
15秒前
无情招牌发布了新的文献求助10
16秒前
李文强完成签到,获得积分10
17秒前
17秒前
科研通AI5应助ff采纳,获得10
17秒前
久伴久爱完成签到 ,获得积分10
20秒前
皮卡丘发布了新的文献求助10
21秒前
lxz发布了新的文献求助10
22秒前
田様应助黄花轮采纳,获得10
23秒前
麦麦完成签到,获得积分10
25秒前
等待的士晋完成签到 ,获得积分10
27秒前
Archer0236发布了新的文献求助10
27秒前
27秒前
CiCi发布了新的文献求助10
28秒前
28秒前
29秒前
苏苏苏苏完成签到,获得积分10
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667828
求助须知:如何正确求助?哪些是违规求助? 3226294
关于积分的说明 9769102
捐赠科研通 2936239
什么是DOI,文献DOI怎么找? 1608345
邀请新用户注册赠送积分活动 759646
科研通“疑难数据库(出版商)”最低求助积分说明 735434