作者
Yuchen Wang,Ling Lin,Lijie Jiang,Alejandro Marín-López
摘要
Hematophagous arthropods, including mosquitoes, ticks, and flies, are responsible for the transmission of several pathogens to vertebrates on whom they blood feed. The diseases caused by these pathogens, collectively known as vector-borne diseases (VBDs), threaten the health of humans and animals. In general, attempts to develop vaccines for pathogens transmitted by arthropods have met with moderate success, with few vaccine candidates currently developed. Nowadays, there are vaccine candidates under clinical trials, including different platforms, like mRNA, DNA, recombinant viral vector-based, virus-like particles (VLPs), inactivated-virus, live-attenuated virus, peptide and protein-based vaccines, all of them based on the presentation of pathogen antigens to the host immune system. A new approach to prevent VBDs has arose during the last decades, based on the design of vaccines that target vector-derived antigens. The salivary secretions of arthropods, in addition of causing allergic reactions and harbor pathogens, are also involved in the transmission and infection establishment in the host, altering its immune responses. In this review, we summarize the achievements in the arthropod salivary-based vaccine development for different vector-borne infectious diseases. This provides a rationale for creating vaccines against different types of arthropod salivary proteins, such as mosquitoes, ticks, and sand flies. Using salivary proteins of clinically important vectors might contribute to achieve protection against and control multiple arthropod-borne infection diseases.