StreaMD: the toolkit for high-throughput molecular dynamics simulations

计算机科学 分子动力学 Python(编程语言) 自动化 软件 服务器 分布式计算 水准点(测量) 计算科学 化学 操作系统 计算化学 机械工程 大地测量学 工程类 地理
作者
Aleksandra Ivanová,Olena Mokshyna,Pavel Polishchuk
出处
期刊:Journal of Cheminformatics [BioMed Central]
卷期号:16 (1)
标识
DOI:10.1186/s13321-024-00918-w
摘要

Abstract Molecular dynamics simulations serve as a prevalent approach for investigating the dynamic behaviour of proteins and protein–ligand complexes. Due to its versatility and speed, GROMACS stands out as a commonly utilized software platform for executing molecular dynamics simulations. However, its effective utilization requires substantial expertise in configuring, executing, and interpreting molecular dynamics trajectories. Existing automation tools are constrained in their capability to conduct simulations for large sets of compounds with minimal user intervention, or in their ability to distribute simulations across multiple servers. To address these challenges, we developed a Python-based tool that streamlines all phases of molecular dynamics simulations, encompassing preparation, execution, and analysis. This tool minimizes the required knowledge for users engaging in molecular dynamics simulations and can efficiently operate across multiple servers within a network or a cluster. Notably, the tool not only automates trajectory simulation but also facilitates the computation of free binding energies for protein–ligand complexes and generates interaction fingerprints across the trajectory. Our study demonstrated the applicability of this tool on several benchmark datasets. Additionally, we provided recommendations for end-users to effectively utilize the tool. Scientific contribution The developed tool, StreaMD, is applicable to different systems (proteins, ligands and their complexes including co-factors) and requires a little user knowledge to setup and run molecular dynamics simulations. Other features of StreaMD are seamless integration with calculation of MM-GBSA/PBSA binding free energies and protein-ligand interaction fingerprints, and running of simulations within distributed environments. All these will facilitate routine and massive molecular dynamics simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
huluobo发布了新的文献求助10
4秒前
lingVing瑜发布了新的文献求助10
4秒前
4秒前
LIN完成签到,获得积分10
5秒前
5秒前
黄憨憨发布了新的文献求助10
6秒前
lulu8809完成签到,获得积分10
6秒前
111完成签到,获得积分10
8秒前
Zlq发布了新的文献求助10
9秒前
嗳7完成签到 ,获得积分10
9秒前
9秒前
后门完成签到,获得积分10
9秒前
11秒前
一一完成签到,获得积分10
12秒前
dong完成签到,获得积分10
14秒前
后门发布了新的文献求助10
16秒前
小杨同学发布了新的文献求助10
18秒前
Ultra完成签到,获得积分10
18秒前
junlin发布了新的文献求助10
18秒前
午后两点最热完成签到 ,获得积分10
21秒前
情怀应助云山采纳,获得10
22秒前
TS发布了新的文献求助10
22秒前
23秒前
23秒前
Owen应助lingVing瑜采纳,获得10
23秒前
wang完成签到,获得积分10
26秒前
111发布了新的文献求助10
28秒前
科研通AI5应助科研通管家采纳,获得10
32秒前
丘比特应助科研通管家采纳,获得10
32秒前
天天快乐应助科研通管家采纳,获得10
33秒前
深情安青应助科研通管家采纳,获得10
33秒前
柔弱云朵应助科研通管家采纳,获得20
33秒前
香蕉觅云应助科研通管家采纳,获得10
33秒前
Tao发布了新的文献求助10
33秒前
我是老大应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得20
33秒前
Orange应助科研通管家采纳,获得10
34秒前
英俊的铭应助科研通管家采纳,获得10
34秒前
joker完成签到,获得积分10
36秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
离子交换膜面电阻的测定方法学 300
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3707976
求助须知:如何正确求助?哪些是违规求助? 3256482
关于积分的说明 9900627
捐赠科研通 2969064
什么是DOI,文献DOI怎么找? 1628303
邀请新用户注册赠送积分活动 772091
科研通“疑难数据库(出版商)”最低求助积分说明 743611