Optimization of breeding program design through stochastic simulation with evolutionary algorithms

计算机科学 数学优化 近亲繁殖 进化算法 遗传算法 核(代数) 机器学习 数学 人口 人口学 组合数学 社会学
作者
Azadeh Hassanpour,Johannes Geibel,Henner Simianer,Antje Rohde,Torsten Pook
出处
期刊:G3: Genes, Genomes, Genetics [Genetics Society of America]
被引量:1
标识
DOI:10.1093/g3journal/jkae248
摘要

The effective planning and allocation of resources in modern breeding programs is a complex task. Breeding program design and operational management have a major impact on the success of a breeding program and changing parameters such as the number of selected/phenotyped/genotyped individuals in the breeding program will impact genetic gain, genetic diversity, and costs. As a result, careful assessment and balancing of design parameters is crucial, taking into account the trade-offs between different breeding goals and associated costs. In a previous study, we optimized the resource allocation strategy in a dairy cattle breeding scheme via the combination of stochastic simulations and kernel regression, aiming to maximize a target function containing genetic gain and the inbreeding rate under a given budget. However, the high number of simulations required when using the proposed kernel regression method to optimize a breeding program with many parameters weakens the effectiveness of such a method. In this work, we are proposing an optimization framework that builds on the concepts of kernel regression but additionally makes use of an evolutionary algorithm to allow for a more effective and general optimization. The key idea is to consider a set of potential parameter settings of the breeding program, evaluate their performance based on stochastic simulations, and use these outputs to derive new parameter settings to test in an iterative procedure. The evolutionary algorithm was implemented in a Snakemake workflow management system to allow for efficient scaling on large distributed computing platforms. The algorithm achieved stabilization around the same optimum with a massively reduced number of simulations. Thereby, the incorporation of class variables and accounting for a higher number of parameters in the optimization framework leads to substantially reduced computing time and better scaling for the desired optimization of a breeding program.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
冷酷的新梅完成签到,获得积分10
2秒前
小阿博完成签到,获得积分10
2秒前
师师发布了新的文献求助10
3秒前
共享精神应助ltt采纳,获得10
6秒前
CodeCraft应助黑衣人的秘密采纳,获得10
6秒前
精灵完成签到,获得积分10
7秒前
杜凯完成签到,获得积分10
7秒前
脑洞疼应助冷酷的新梅采纳,获得10
8秒前
9秒前
10秒前
精灵发布了新的文献求助20
11秒前
善学以致用应助Maomao采纳,获得10
14秒前
zxl发布了新的文献求助10
14秒前
15秒前
格格发布了新的文献求助10
16秒前
monere发布了新的文献求助10
18秒前
英俊的胜发布了新的文献求助10
21秒前
我是老大应助lailailai采纳,获得10
21秒前
iNk应助阳光的香芦采纳,获得20
22秒前
科研通AI5应助潇洒的布偶采纳,获得10
22秒前
23秒前
晨曦完成签到 ,获得积分10
25秒前
25秒前
格格完成签到,获得积分10
27秒前
Gi发布了新的文献求助10
27秒前
椰果应助科研通管家采纳,获得10
29秒前
29秒前
柚子应助科研通管家采纳,获得10
29秒前
赘婿应助科研通管家采纳,获得10
29秒前
852应助科研通管家采纳,获得10
29秒前
星辰大海应助科研通管家采纳,获得10
29秒前
慕青应助科研通管家采纳,获得10
29秒前
wangrblzu应助科研通管家采纳,获得10
29秒前
29秒前
打打应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
29秒前
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Izeltabart tapatansine - AdisInsight 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775383
求助须知:如何正确求助?哪些是违规求助? 3321040
关于积分的说明 10203256
捐赠科研通 3035928
什么是DOI,文献DOI怎么找? 1665883
邀请新用户注册赠送积分活动 797128
科研通“疑难数据库(出版商)”最低求助积分说明 757744