Collapse Pressure Prediction and Uncertainty Analysis Based on Mechanism and Data Hybrid-Driven

计算机科学 机制(生物学) 数据挖掘 物理 量子力学
作者
Houjun Li,Chenggang Xian,Yingjun Liu,Xiaoqing Huang,Cheng Liu,Jianjun Wang,Yong He
标识
DOI:10.2118/222938-ms
摘要

Abstract Collapse pressure is an important part of calculating the lower limit of the safe mud density window, which is crucial for optimizing the well trajectory, designing the drilling fluid density, and ensuring drilling safety. However, collapse pressure prediction methods based on physical mechanisms are theoretically complex, computationally intensive, and slow. Data mining-based prediction methods often rely on conventional machine learning models, which suffer from low prediction accuracy, high data demand, and poor interpretability. In this paper, a novel hybrid-driven model combining mechanistic knowledge and machine learning methods is proposed, which has a faster computational speed in collapse pressure prediction compared with the traditional analytical model, and a better performance compared with the existing data-driven models. The model incorporates the stress transformation, rock strength criteria, and other knowledge to ensure the robustness and interpretability of this prediction model. The neural network structure and model hyperparameters are optimized using a Bayesian optimization algorithm. To consider the influence of uncertainty of input parameters on collapse pressure, the Monte Carlo method is used to quantify the influence of uncertainty of input parameters on collapse pressure prediction results based on the hybrid-driven prediction model, and the sensitivity of different input parameters to the outcomes is determined. The proposed model, tested on a test dataset, demonstrated high prediction accuracy and prediction stability with an average absolute error of 0.0037 g/cm3 and a root mean square error of 0.0104 g/cm3 for the collapse pressure equivalent density. Furthermore, a horizontal well was selected for validation, with predicted results exhibiting an average absolute error of only 0.0045 g/cm3 compared to the logging interpretation results, and a computational speed nearly 100 times faster than traditional analytical models. Three points with different stress conditions were selected on this well and their equivalent density of collapse pressure hemispheric projection maps were predicted, and the results were consistent with the actual results, indicating that the model can accurately capture the variation of collapse pressure with well inclination and azimuth. To quantify the effect of input parameter uncertainty on wellbore stability, the influence of input parameter uncertainty on the equivalent density of collapse pressure is simulated based on the above prediction model in combination with the Monte Carlo method, and the corresponding confidence intervals are given. The results found that the effect of uncertainty in ground stress on collapse pressure is relatively significant. In conclusion, the hybrid-driven model effectively integrates physical knowledge, enabling rapid and accurate prediction of collapse pressure in horizontal and inclined wells, offering an innovative approach for intelligent wellbore stability assessment and uncertainty analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幸福乐蕊完成签到,获得积分10
刚刚
夜阑听雨完成签到,获得积分0
1秒前
支妙完成签到,获得积分10
1秒前
butterfly发布了新的文献求助10
1秒前
无极微光应助SYY采纳,获得20
2秒前
自由的山芙完成签到,获得积分10
2秒前
蒲公英完成签到,获得积分10
2秒前
ZY完成签到,获得积分10
2秒前
厄尔尼诺完成签到,获得积分10
2秒前
李雪松完成签到 ,获得积分10
2秒前
2秒前
左右完成签到,获得积分10
3秒前
开心绿柳完成签到,获得积分0
3秒前
Hanoi347发布了新的文献求助30
3秒前
xiaoyu完成签到,获得积分10
3秒前
哎呀哎呀呀完成签到,获得积分10
4秒前
我是小张完成签到 ,获得积分10
4秒前
斯文的以亦完成签到,获得积分10
4秒前
5秒前
555完成签到,获得积分10
5秒前
5秒前
5秒前
可爱的函函应助邵振启采纳,获得10
5秒前
yukang完成签到,获得积分10
5秒前
MIN完成签到,获得积分10
6秒前
文静季节发布了新的文献求助10
6秒前
执着以彤完成签到 ,获得积分10
7秒前
善学以致用应助徐二狗采纳,获得10
7秒前
7秒前
Orange应助wgl200212采纳,获得10
7秒前
Cochane完成签到,获得积分10
7秒前
大海之滨完成签到,获得积分10
7秒前
公龟应助飞飞飞采纳,获得10
7秒前
123完成签到,获得积分10
8秒前
zywzyw完成签到,获得积分10
8秒前
靓丽不评完成签到,获得积分10
8秒前
8秒前
非言墨语完成签到,获得积分10
8秒前
美丽凡阳完成签到,获得积分10
10秒前
风吹完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651684
求助须知:如何正确求助?哪些是违规求助? 4785671
关于积分的说明 15055211
捐赠科研通 4810389
什么是DOI,文献DOI怎么找? 2573087
邀请新用户注册赠送积分活动 1529005
关于科研通互助平台的介绍 1487961