Collapse Pressure Prediction and Uncertainty Analysis Based on Mechanism and Data Hybrid-Driven

计算机科学 机制(生物学) 数据挖掘 物理 量子力学
作者
Houjun Li,Chenggang Xian,Yingjun Liu,Xiaoqing Huang,Cheng Liu,Jianjun Wang,Yong He
标识
DOI:10.2118/222938-ms
摘要

Abstract Collapse pressure is an important part of calculating the lower limit of the safe mud density window, which is crucial for optimizing the well trajectory, designing the drilling fluid density, and ensuring drilling safety. However, collapse pressure prediction methods based on physical mechanisms are theoretically complex, computationally intensive, and slow. Data mining-based prediction methods often rely on conventional machine learning models, which suffer from low prediction accuracy, high data demand, and poor interpretability. In this paper, a novel hybrid-driven model combining mechanistic knowledge and machine learning methods is proposed, which has a faster computational speed in collapse pressure prediction compared with the traditional analytical model, and a better performance compared with the existing data-driven models. The model incorporates the stress transformation, rock strength criteria, and other knowledge to ensure the robustness and interpretability of this prediction model. The neural network structure and model hyperparameters are optimized using a Bayesian optimization algorithm. To consider the influence of uncertainty of input parameters on collapse pressure, the Monte Carlo method is used to quantify the influence of uncertainty of input parameters on collapse pressure prediction results based on the hybrid-driven prediction model, and the sensitivity of different input parameters to the outcomes is determined. The proposed model, tested on a test dataset, demonstrated high prediction accuracy and prediction stability with an average absolute error of 0.0037 g/cm3 and a root mean square error of 0.0104 g/cm3 for the collapse pressure equivalent density. Furthermore, a horizontal well was selected for validation, with predicted results exhibiting an average absolute error of only 0.0045 g/cm3 compared to the logging interpretation results, and a computational speed nearly 100 times faster than traditional analytical models. Three points with different stress conditions were selected on this well and their equivalent density of collapse pressure hemispheric projection maps were predicted, and the results were consistent with the actual results, indicating that the model can accurately capture the variation of collapse pressure with well inclination and azimuth. To quantify the effect of input parameter uncertainty on wellbore stability, the influence of input parameter uncertainty on the equivalent density of collapse pressure is simulated based on the above prediction model in combination with the Monte Carlo method, and the corresponding confidence intervals are given. The results found that the effect of uncertainty in ground stress on collapse pressure is relatively significant. In conclusion, the hybrid-driven model effectively integrates physical knowledge, enabling rapid and accurate prediction of collapse pressure in horizontal and inclined wells, offering an innovative approach for intelligent wellbore stability assessment and uncertainty analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跃毒娘发布了新的文献求助10
刚刚
深情安青应助yn采纳,获得10
1秒前
1秒前
1秒前
六便士在攒完成签到,获得积分10
1秒前
黑加仑发布了新的文献求助10
1秒前
SciGPT应助hanzhou1314采纳,获得30
2秒前
gxmu6322发布了新的文献求助10
2秒前
烟花应助极地东风采纳,获得10
3秒前
3秒前
3秒前
ABBYTHU18完成签到,获得积分10
4秒前
ilk666完成签到,获得积分10
4秒前
复杂便当发布了新的文献求助10
4秒前
4秒前
jiaru发布了新的文献求助10
4秒前
4秒前
wangye完成签到,获得积分10
5秒前
欧阳振应助雪白葵阴采纳,获得10
5秒前
gll206发布了新的文献求助10
6秒前
书羽完成签到,获得积分0
6秒前
江江完成签到,获得积分10
6秒前
赘婿应助123采纳,获得10
7秒前
知了发布了新的文献求助10
7秒前
敏感初露完成签到,获得积分10
7秒前
7秒前
希望天下0贩的0应助277采纳,获得10
8秒前
儒雅沛凝发布了新的文献求助10
8秒前
zz完成签到,获得积分10
8秒前
8秒前
9秒前
黑崎一护完成签到,获得积分10
9秒前
大胆的向日葵应助syx采纳,获得10
9秒前
9秒前
9秒前
Tiffany发布了新的文献求助10
10秒前
敏感初露发布了新的文献求助10
10秒前
过氧化氢应助王不王采纳,获得10
12秒前
不能说的秘密完成签到,获得积分10
13秒前
羊驼罐头完成签到,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582