已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Collapse Pressure Prediction and Uncertainty Analysis Based on Mechanism and Data Hybrid-Driven

计算机科学 机制(生物学) 数据挖掘 物理 量子力学
作者
Houjun Li,Chenggang Xian,Yingjun Liu,Xiaoqing Huang,Cheng Liu,Jianjun Wang,Yong He
标识
DOI:10.2118/222938-ms
摘要

Abstract Collapse pressure is an important part of calculating the lower limit of the safe mud density window, which is crucial for optimizing the well trajectory, designing the drilling fluid density, and ensuring drilling safety. However, collapse pressure prediction methods based on physical mechanisms are theoretically complex, computationally intensive, and slow. Data mining-based prediction methods often rely on conventional machine learning models, which suffer from low prediction accuracy, high data demand, and poor interpretability. In this paper, a novel hybrid-driven model combining mechanistic knowledge and machine learning methods is proposed, which has a faster computational speed in collapse pressure prediction compared with the traditional analytical model, and a better performance compared with the existing data-driven models. The model incorporates the stress transformation, rock strength criteria, and other knowledge to ensure the robustness and interpretability of this prediction model. The neural network structure and model hyperparameters are optimized using a Bayesian optimization algorithm. To consider the influence of uncertainty of input parameters on collapse pressure, the Monte Carlo method is used to quantify the influence of uncertainty of input parameters on collapse pressure prediction results based on the hybrid-driven prediction model, and the sensitivity of different input parameters to the outcomes is determined. The proposed model, tested on a test dataset, demonstrated high prediction accuracy and prediction stability with an average absolute error of 0.0037 g/cm3 and a root mean square error of 0.0104 g/cm3 for the collapse pressure equivalent density. Furthermore, a horizontal well was selected for validation, with predicted results exhibiting an average absolute error of only 0.0045 g/cm3 compared to the logging interpretation results, and a computational speed nearly 100 times faster than traditional analytical models. Three points with different stress conditions were selected on this well and their equivalent density of collapse pressure hemispheric projection maps were predicted, and the results were consistent with the actual results, indicating that the model can accurately capture the variation of collapse pressure with well inclination and azimuth. To quantify the effect of input parameter uncertainty on wellbore stability, the influence of input parameter uncertainty on the equivalent density of collapse pressure is simulated based on the above prediction model in combination with the Monte Carlo method, and the corresponding confidence intervals are given. The results found that the effect of uncertainty in ground stress on collapse pressure is relatively significant. In conclusion, the hybrid-driven model effectively integrates physical knowledge, enabling rapid and accurate prediction of collapse pressure in horizontal and inclined wells, offering an innovative approach for intelligent wellbore stability assessment and uncertainty analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
slyhhk完成签到 ,获得积分10
1秒前
1秒前
鸿儒完成签到,获得积分10
1秒前
5秒前
菜菜发布了新的文献求助10
7秒前
菜虫虫发布了新的文献求助10
8秒前
东东完成签到 ,获得积分10
9秒前
香蕉觅云应助我爱蓝胖子采纳,获得10
10秒前
xzy998应助菜菜采纳,获得10
14秒前
14秒前
Solomon完成签到 ,获得积分0
17秒前
阿君发布了新的文献求助10
19秒前
20秒前
okk发布了新的文献求助10
20秒前
囿于昼夜完成签到,获得积分10
21秒前
21秒前
22秒前
25秒前
29秒前
沐沐心完成签到 ,获得积分10
29秒前
我的苞娜公主完成签到,获得积分10
32秒前
852应助孤独靖柏采纳,获得10
34秒前
斯文败类应助大力的无声采纳,获得10
34秒前
我爱蓝胖子完成签到,获得积分10
37秒前
华仔应助科研通管家采纳,获得10
37秒前
Ava应助科研通管家采纳,获得30
37秒前
大模型应助科研通管家采纳,获得10
37秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
ff应助科研通管家采纳,获得10
38秒前
38秒前
笨笨西牛完成签到 ,获得积分10
39秒前
40秒前
40秒前
42秒前
隐形曼青应助鸿儒采纳,获得10
43秒前
于雷是我发布了新的文献求助10
45秒前
阿君完成签到,获得积分20
45秒前
孤独靖柏发布了新的文献求助10
46秒前
xuxu完成签到,获得积分10
49秒前
华仔应助温暖静柏采纳,获得10
57秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314227
求助须知:如何正确求助?哪些是违规求助? 2946569
关于积分的说明 8530722
捐赠科研通 2622271
什么是DOI,文献DOI怎么找? 1434442
科研通“疑难数据库(出版商)”最低求助积分说明 665310
邀请新用户注册赠送积分活动 650838