Collapse Pressure Prediction and Uncertainty Analysis Based on Mechanism and Data Hybrid-Driven

计算机科学 机制(生物学) 数据挖掘 物理 量子力学
作者
Houjun Li,Chenggang Xian,Yingjun Liu,Xiaoqing Huang,Cheng Liu,Jianjun Wang,Yong He
标识
DOI:10.2118/222938-ms
摘要

Abstract Collapse pressure is an important part of calculating the lower limit of the safe mud density window, which is crucial for optimizing the well trajectory, designing the drilling fluid density, and ensuring drilling safety. However, collapse pressure prediction methods based on physical mechanisms are theoretically complex, computationally intensive, and slow. Data mining-based prediction methods often rely on conventional machine learning models, which suffer from low prediction accuracy, high data demand, and poor interpretability. In this paper, a novel hybrid-driven model combining mechanistic knowledge and machine learning methods is proposed, which has a faster computational speed in collapse pressure prediction compared with the traditional analytical model, and a better performance compared with the existing data-driven models. The model incorporates the stress transformation, rock strength criteria, and other knowledge to ensure the robustness and interpretability of this prediction model. The neural network structure and model hyperparameters are optimized using a Bayesian optimization algorithm. To consider the influence of uncertainty of input parameters on collapse pressure, the Monte Carlo method is used to quantify the influence of uncertainty of input parameters on collapse pressure prediction results based on the hybrid-driven prediction model, and the sensitivity of different input parameters to the outcomes is determined. The proposed model, tested on a test dataset, demonstrated high prediction accuracy and prediction stability with an average absolute error of 0.0037 g/cm3 and a root mean square error of 0.0104 g/cm3 for the collapse pressure equivalent density. Furthermore, a horizontal well was selected for validation, with predicted results exhibiting an average absolute error of only 0.0045 g/cm3 compared to the logging interpretation results, and a computational speed nearly 100 times faster than traditional analytical models. Three points with different stress conditions were selected on this well and their equivalent density of collapse pressure hemispheric projection maps were predicted, and the results were consistent with the actual results, indicating that the model can accurately capture the variation of collapse pressure with well inclination and azimuth. To quantify the effect of input parameter uncertainty on wellbore stability, the influence of input parameter uncertainty on the equivalent density of collapse pressure is simulated based on the above prediction model in combination with the Monte Carlo method, and the corresponding confidence intervals are given. The results found that the effect of uncertainty in ground stress on collapse pressure is relatively significant. In conclusion, the hybrid-driven model effectively integrates physical knowledge, enabling rapid and accurate prediction of collapse pressure in horizontal and inclined wells, offering an innovative approach for intelligent wellbore stability assessment and uncertainty analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不是省油的灯完成签到,获得积分10
1秒前
小管完成签到,获得积分20
1秒前
niu1发布了新的文献求助10
1秒前
夏泽水梦完成签到,获得积分10
3秒前
老实的半山完成签到,获得积分10
3秒前
指纹抒写年轮完成签到,获得积分10
3秒前
愉快的哈密瓜完成签到,获得积分10
3秒前
小小发布了新的文献求助10
3秒前
小二郎应助成就缘分采纳,获得10
3秒前
4秒前
看看文献吧完成签到,获得积分10
4秒前
啵啵发布了新的文献求助10
4秒前
5秒前
初吻还在发布了新的文献求助10
5秒前
哇哦发布了新的文献求助10
6秒前
李唯佳发布了新的文献求助10
6秒前
6秒前
酷波er应助渊思采纳,获得10
6秒前
6秒前
罗mian完成签到,获得积分10
7秒前
7秒前
WUJIAYU完成签到 ,获得积分10
8秒前
小蘑菇应助小汤圆采纳,获得10
9秒前
认真的小熊饼干完成签到,获得积分10
9秒前
Grayball应助蒙开心采纳,获得10
9秒前
9秒前
真开心完成签到,获得积分10
9秒前
Ava应助点点采纳,获得10
9秒前
Seldomyg完成签到 ,获得积分10
10秒前
鲸是海蓝色关注了科研通微信公众号
10秒前
南亭完成签到,获得积分10
10秒前
Orange应助o10采纳,获得10
11秒前
11秒前
11秒前
小王发布了新的文献求助10
12秒前
初吻还在完成签到,获得积分10
13秒前
MADKAI发布了新的文献求助10
13秒前
Asss完成签到,获得积分10
13秒前
13秒前
时光友岸完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672