From Micro to Meso: A Data-Driven Mesoscopic Region Division Method Based on Functional Connectivity for EEG-Based Driver Fatigue Detection

脑电图 计算机科学 概化理论 介观物理学 功能连接 限制 神经生理学 试验台 人工智能 连接体 机器学习 模式识别(心理学) 邻接矩阵 人工神经网络 邻接表 图形 连贯性(哲学赌博策略) 任务分析 数据挖掘 深度学习 可视化 生物神经网络 可扩展性 基质(化学分析) 抖动
作者
Linlin Zhong,Min Xu,Jie Li,Zhongfei Bai,Hongfei Ji,Lingyu Liu,Lingjing Jin
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (4): 2603-2616 被引量:2
标识
DOI:10.1109/jbhi.2024.3504847
摘要

The integration of EEG signals and deep learning methods is emerging as an effective approach for brain fatigue detection, particularly utilizing Graph Neural Networks(GNNs) that excel in capturing complex electrode relationships. A significant challenge within GNNs is the construction of an effective adjacency matrix that enhances spatial information learning. Concurrently, electrode aggregation in EEG has emerged as a pivotal area of research. However, conventional partitioning methods depend on task-specific prior knowledge, limiting their generalizability across diverse tasks. To Address this issue, we propose a novel mesoscopic region division approach for EEG-based driver fatigue detection, leveraging inherent data characteristics and functional connectivity-based GNN. This method adopts a two-stage approach: initially, micro-electrodes exhibiting similar functional connectivity relationships are grouped as "mesoscopic region"; subsequently, all micro-electrodes in the same group are aggregated into virtual meso-electrodes, and the fatigue state classification is subsequently based on the functional connectivity between them. Applied to a public driver fatigue detection dataset, our approach surpasses existing state-of-the-art methods in performance. Additionally, interpretive analysis provides micro and mesoscopic insights into brain regions and neuronal connections associated with alert and fatigued states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Fox发布了新的文献求助10
1秒前
麦麦脆汁鸡完成签到,获得积分10
1秒前
烟花应助大群采纳,获得10
2秒前
3秒前
烂漫的弘文完成签到,获得积分10
4秒前
英勇的竺完成签到,获得积分10
6秒前
羊羊羊发布了新的文献求助10
6秒前
wanci应助嘟嘟图图采纳,获得10
8秒前
8秒前
Brian完成签到,获得积分10
9秒前
深情安青应助mhpvv采纳,获得10
9秒前
9秒前
pluto应助爱笑的寿司采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
连爱琴完成签到,获得积分10
12秒前
关山完成签到,获得积分10
12秒前
12秒前
落桑发布了新的文献求助10
15秒前
大群发布了新的文献求助10
17秒前
李沁完成签到 ,获得积分10
17秒前
17秒前
连爱琴发布了新的文献求助20
17秒前
18秒前
19秒前
19秒前
舒心明杰完成签到,获得积分10
19秒前
luoshiyi完成签到 ,获得积分10
19秒前
嘟嘟图图发布了新的文献求助10
23秒前
米豆爸发布了新的文献求助10
24秒前
打打应助乌龟娟采纳,获得10
24秒前
shen完成签到 ,获得积分10
25秒前
25秒前
nk完成签到 ,获得积分10
25秒前
所所应助Sam十九采纳,获得10
26秒前
量子星尘发布了新的文献求助10
27秒前
嘿嘿完成签到,获得积分10
28秒前
希望天下0贩的0应助ffddsdc采纳,获得10
28秒前
嘟嘟图图完成签到,获得积分10
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5793684
求助须知:如何正确求助?哪些是违规求助? 5751490
关于积分的说明 15486792
捐赠科研通 4920641
什么是DOI,文献DOI怎么找? 2649033
邀请新用户注册赠送积分活动 1596363
关于科研通互助平台的介绍 1550911