Energy dissipation of solid–liquid flow in a centrifugal pump based on an improved four-way coupling method

叶轮 蜗壳 机械 消散 计算流体力学 物理 滑移系数 湍流 熵产生 离心泵 涡流 涡度 热力学
作者
Wei Pu,Leilei Ji,Wei Li,Weidong Shi,Fei Tian,Wei Huang,Yang Yang,Xiwei Xu,Ramesh K. Agarwal,Song Jiang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (1)
标识
DOI:10.1063/5.0248696
摘要

To investigate the energy dissipation mechanisms within the pump and improve the computational accuracy of the solid–liquid flow numerical simulations, in this study, an improved CFD-DEM (Computational Fluid Dynamics - Discrete Element Method) method has been presented. First, the improved method of CFD-DEM is introduced, which mainly considers the turbulent dissipation of particles in the near-wall region and velocity field reconstruction. Then, the simulation results before and after the method's enhancement are compared. Finally, the analysis of the energy characteristics of the liquid phase flow field in the solid–liquid flow is conducted. Research shows that the modified CFD-DEM method significantly improves the accuracy of the particle distribution predictions, with the numerical results for head and efficiency being much closer to experimental values. In the high-speed regions of the impeller flow field, primarily located behind the pressure side of the blades, the liquid phase flow velocity and pressure fluctuations are less affected by changes in solid phase concentration. In the fluid region of the centrifugal pump, the energy loss caused by entropy production is significantly concentrated in the volute and impeller regions. Specifically, the entropy production dissipation in the volute region accounts for the substantial portion of the total entropy production, approximately 67%–68%, while the entropy production dissipation in the impeller region accounts for about 19.7%–20.4%. As the solid phase concentration increases, the energy dissipation within the pump gradually rises, and the total vorticity at the impeller inlet also increases correspondingly, with the vorticity distribution being related to the number of blades. The findings provide a reference for further exploring solid–liquid flow within centrifugal pumps.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
百里太清完成签到,获得积分10
1秒前
今后应助终止子采纳,获得10
2秒前
顾矜应助纯情的咖啡采纳,获得10
3秒前
可cabd完成签到,获得积分10
3秒前
小鱼爱吃肉应助上上采纳,获得10
3秒前
4秒前
4秒前
疯狂的迪子完成签到 ,获得积分10
5秒前
Sarrot发布了新的文献求助10
5秒前
冯xiaoni完成签到,获得积分10
5秒前
PePsi完成签到 ,获得积分10
5秒前
小芃应助杨fafa采纳,获得10
6秒前
6秒前
6秒前
科研通AI2S应助jy采纳,获得10
6秒前
7秒前
烟花应助小绵羊采纳,获得10
8秒前
你倒是发啊完成签到,获得积分10
8秒前
今后应助娇气的白卉采纳,获得10
8秒前
三文鱼发布了新的文献求助10
10秒前
赘婿应助钙钛矿要发光采纳,获得10
10秒前
mhl11应助ning_qing采纳,获得10
10秒前
111完成签到,获得积分10
10秒前
wjx发布了新的文献求助10
10秒前
橙子陈应助西柚芝士茉莉采纳,获得20
10秒前
wjx发布了新的文献求助10
10秒前
10秒前
wjx发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
13秒前
王了了发布了新的文献求助10
13秒前
14秒前
14秒前
Truman发布了新的文献求助10
14秒前
15秒前
15秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328628
求助须知:如何正确求助?哪些是违规求助? 2958733
关于积分的说明 8591457
捐赠科研通 2637020
什么是DOI,文献DOI怎么找? 1443279
科研通“疑难数据库(出版商)”最低求助积分说明 668633
邀请新用户注册赠送积分活动 655938