Energy dissipation of solid–liquid flow in a centrifugal pump based on an improved four-way coupling method

叶轮 蜗壳 机械 消散 计算流体力学 物理 滑移系数 湍流 熵产生 离心泵 涡流 涡度 热力学
作者
Wei Pu,Leilei Ji,Wei Li,Weidong Shi,Fei Tian,Wei Huang,Yang Yang,Xiwei Xu,Ramesh K. Agarwal,Song Jiang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (1)
标识
DOI:10.1063/5.0248696
摘要

To investigate the energy dissipation mechanisms within the pump and improve the computational accuracy of the solid–liquid flow numerical simulations, in this study, an improved CFD-DEM (Computational Fluid Dynamics - Discrete Element Method) method has been presented. First, the improved method of CFD-DEM is introduced, which mainly considers the turbulent dissipation of particles in the near-wall region and velocity field reconstruction. Then, the simulation results before and after the method's enhancement are compared. Finally, the analysis of the energy characteristics of the liquid phase flow field in the solid–liquid flow is conducted. Research shows that the modified CFD-DEM method significantly improves the accuracy of the particle distribution predictions, with the numerical results for head and efficiency being much closer to experimental values. In the high-speed regions of the impeller flow field, primarily located behind the pressure side of the blades, the liquid phase flow velocity and pressure fluctuations are less affected by changes in solid phase concentration. In the fluid region of the centrifugal pump, the energy loss caused by entropy production is significantly concentrated in the volute and impeller regions. Specifically, the entropy production dissipation in the volute region accounts for the substantial portion of the total entropy production, approximately 67%–68%, while the entropy production dissipation in the impeller region accounts for about 19.7%–20.4%. As the solid phase concentration increases, the energy dissipation within the pump gradually rises, and the total vorticity at the impeller inlet also increases correspondingly, with the vorticity distribution being related to the number of blades. The findings provide a reference for further exploring solid–liquid flow within centrifugal pumps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明亮忆秋发布了新的文献求助10
2秒前
因一完成签到,获得积分10
4秒前
5秒前
李健的粉丝团团长应助CK采纳,获得10
7秒前
玮i完成签到,获得积分10
7秒前
今后应助100采纳,获得10
8秒前
麦子完成签到,获得积分10
10秒前
明亮忆秋完成签到,获得积分10
10秒前
12秒前
司空豁发布了新的文献求助20
14秒前
吕大本事完成签到,获得积分10
14秒前
16秒前
李爱国应助淡定的疾采纳,获得10
16秒前
麦子发布了新的文献求助10
16秒前
张鹏举发布了新的文献求助10
16秒前
17秒前
科目三应助科研通管家采纳,获得10
19秒前
汉堡包应助小林太郎采纳,获得100
20秒前
赘婿应助科研通管家采纳,获得10
20秒前
20秒前
21秒前
HJJHJH发布了新的文献求助10
23秒前
24秒前
科研小菜鸟应助木子采纳,获得10
27秒前
27秒前
寰2023发布了新的文献求助10
27秒前
科研通AI5应助科研王子采纳,获得10
29秒前
29秒前
29秒前
30秒前
31秒前
成就的雨琴完成签到,获得积分10
32秒前
fishhh发布了新的文献求助10
34秒前
35秒前
小聖完成签到 ,获得积分10
38秒前
科研通AI5应助积极的天抒采纳,获得10
39秒前
最棒哒发布了新的文献求助10
40秒前
大胖完成签到,获得积分10
40秒前
pxh完成签到,获得积分20
40秒前
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 820
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748827
求助须知:如何正确求助?哪些是违规求助? 3291864
关于积分的说明 10074737
捐赠科研通 3007580
什么是DOI,文献DOI怎么找? 1651693
邀请新用户注册赠送积分活动 786660
科研通“疑难数据库(出版商)”最低求助积分说明 751801