Purpose This paper aims to propose a novel wheel-based multiaxis force sensor designed to detect the interaction forces and moments between the planetary rover’s wheel and the terrain, thereby assisting the rover in environmental perception. Design/methodology/approach The authors’ design approach encompasses the mechanical structure design, decoupling methods and component integration techniques, effectively incorporating multiaxis sensors into the forward-sensing wheel. This enables high-precision and high-reliability detection of wheel–terrain interaction forces and torques. Findings The designed wheel-based multiaxis force sensor exhibits a nonlinearity error of 0.45%, a hysteresis error of 0.56% and a repeatability error of 0.49%, meeting the requirements for practical applications. Furthermore, the effectiveness and stability of the designed wheel-based multidimensional force sensor have been validated through hardware-in-the-loop experiments and full-vehicle model testing. Originality/value Unlike previous methods that directly integrate multiaxis sensors into the forward-sensing wheel, the authors have designed the force sensing wheel with consideration of its limited design space and the need for high measurement accuracy. The effectiveness of the designed wheel-based multidimensional force sensor was ultimately validated through static calibration, hardware-in-the-loop experiments and full-vehicle model experiments.